Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Complex II ambiguities"

From Bioblast
 
(11 intermediate revisions by the same user not shown)
Line 2: Line 2:
|abbr=CII ambiguities
|abbr=CII ambiguities
|description=[[File:CII-ambiguities Graphical abstract.png|300px|left|link=Gnaiger 2023 MitoFit CII]]The current narrative that the reduced coenzymes NADH and FADH2 feed electrons from the tricarboxylic acid (TCA) cycle into the mitochondrial electron transfer system can create ambiguities around respiratory Complex CII. Succinate dehydrogenase or CII reduces FAD to FADH2 in the canonical forward TCA cycle. However, some graphical representations of the membrane-bound electron transfer system (ETS) depict CII as the site of oxidation of FADH2. This leads to the false believe that FADH2 generated by electron transferring flavoprotein (CETF) in fatty acid oxidation and mitochondrial glycerophosphate dehydrogenase (CGpDH) feeds electrons into the ETS through CII. In reality, NADH and succinate produced in the TCA cycle are the substrates of Complexes CI and CII, respectively, and the reduced flavin groups FMNH2 and FADH2 are downstream products of CI and CII, respectively, carrying electrons from CI and CII into the Q-junction. Similarly, CETF and CGpDH feed electrons into the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature call for quality control, to secure scientific standards in current communications on bioenergetics and support adequate clinical applications.
|description=[[File:CII-ambiguities Graphical abstract.png|300px|left|link=Gnaiger 2023 MitoFit CII]]The current narrative that the reduced coenzymes NADH and FADH2 feed electrons from the tricarboxylic acid (TCA) cycle into the mitochondrial electron transfer system can create ambiguities around respiratory Complex CII. Succinate dehydrogenase or CII reduces FAD to FADH2 in the canonical forward TCA cycle. However, some graphical representations of the membrane-bound electron transfer system (ETS) depict CII as the site of oxidation of FADH2. This leads to the false believe that FADH2 generated by electron transferring flavoprotein (CETF) in fatty acid oxidation and mitochondrial glycerophosphate dehydrogenase (CGpDH) feeds electrons into the ETS through CII. In reality, NADH and succinate produced in the TCA cycle are the substrates of Complexes CI and CII, respectively, and the reduced flavin groups FMNH2 and FADH2 are downstream products of CI and CII, respectively, carrying electrons from CI and CII into the Q-junction. Similarly, CETF and CGpDH feed electrons into the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature call for quality control, to secure scientific standards in current communications on bioenergetics and support adequate clinical applications.
|info=Gnaiger E (2023) Complex II ambiguities ― FADH<sub>2</sub> in the electron transfer system. MitoFit Preprints 2023.3. https://doi.org/10.26124/mitofit:2023-0003
|info=Gnaiger E (2024) Complex II ambiguities ― FADH<sub>2</sub> in the electron transfer system. J Biol Chem 300: 105470. https://doi.org/10.1016/j.jbc.2023.105470
}}
}}
'''» ''Links:''''' [[Ambiguity crisis]], [[:Category:Ambiguity crisis - NAD and H+ |Complex I and hydrogen ion ambiguities in the electron transfer system]]
__TOC__
== A game of cards ==
:::: 33 copies or variations of a CII ambiguity theme
:::::: [[File:Martell 2023 Nat Commun CORRECTION.png|400px|link=Martell 2023 Nat Commun]]
:::: '''1.''' Martell E, Kuzmychova H, Kaul E, Senthil H, Chowdhury SR, Morrison LC, Fresnoza A, Zagozewski J, Venugopal C, Anderson CM, Singh SK, Banerji V, Werbowetski-Ogilvie TE, Sharif T (2023) Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 medulloblastoma. '''Nat Commun''' 14:2502. - [[Martell 2023 Nat Commun |»Bioblast link«]]
<br>
:::::: [[File:Solhaug 2023 Cytotechnology CORRECTION.png|400px|link=Solhaug 2023 Cytotechnology]]
:::: '''2.''' Solhaug A, Gjessing M, Sandvik M, Eriksen GS (2023) The gill epithelial cell lines RTgill-W1, from Rainbow trout and ASG-10, from Atlantic salmon, exert different toxicity profiles towards rotenone. '''Cytotechnology''' 75:63-75. - [[Solhaug 2023 Cytotechnology |»Bioblast link«]]
<br>
:::::: [[File:Fahimi 2022 Trends in Chemistry CORRECTION.png|400px|link=Fahimi 2022 Trends in Chemistry]]
:::: '''3.''' Fahimi P, Matta CF (2022) The hot mitochondrion paradox: reconciling theory and experiment. '''Trends in Chemistry''' 4:4-20. - [[Fahimi 2022 Trends in Chemistry |»Bioblast link«]]
<br>
:::::: [[File:Foo 2022 Trends Microbiol CORRECTION.png|400px|link=Foo 2022 Trends Microbiol]]
:::: '''4.''' Foo J, Bellot G, Pervaiz S, Alonso S (2022) Mitochondria-mediated oxidative stress during viral infection. '''Trends Microbiol''' 30:679-92. - [[Foo 2022 Trends Microbiol |»Bioblast link«]]
<br>
:::::: [[File:Joshi 2022 Biomolecules CORRECTION.png|400px|link=Joshi 2022 Biomolecules]]
:::: '''5.''' Joshi A, Ito T, Picard D, Neckers L (2022) The mitochondrial HSP90 paralog TRAP1: structural dynamics, interactome, role in metabolic regulation, and inhibitors. '''Biomolecules''' 12:880. - [[Joshi 2022 Biomolecules |»Bioblast link«]]
<br>
:::::: [[File:Manickam 2022 J Control Release CORRECTION.png|400px|link=Manickam 2022 J Control Release]]
:::: '''6.''' Manickam DS (2022) Delivery of mitochondria via extracellular vesicles - a new horizon in drug delivery. '''J Control Release''' 343:400-7. - [[Manickam 2022 J Control Release |»Bioblast link«]]
<br>
:::::: [[File:Wu 2022 Neuromolecular Med CORRECTION.png|400px|link=Wu 2022 Neuromolecular Med]]
:::: '''7.''' Wu Z, Ho WS, Lu R (2022) Targeting mitochondrial oxidative phosphorylation in glioblastoma therapy. '''Neuromolecular Med''' 24:18-22. - [[Wu 2022 Neuromolecular Med |»Bioblast link«]]
<br>
:::::: [[File:Yang 2022 J Cleaner Production CORRECTION.png|400px|link=Yang 2022 J Cleaner Production]]
:::: '''8.''' Yang Y, Zhang X, Hu X, Zhao J, Chen X, Wei X, Yu X (2022) Analysis of the differential metabolic pathway of cultured ''Chlorococcum humicola'' with hydroquinone toxic sludge extract. '''J Cleaner Production''' 370:133486. - [[Yang 2022 J Cleaner Production |»Bioblast link«]]
<br>
:::::: [[File:Ignatieva 2021 Int J Mol Sci CORRECTION.png|400px|link=Ignatieva 2021 Int J Mol Sci]]
:::: '''9.''' Ignatieva E, Smolina N, Kostareva A, Dmitrieva R (2021) Skeletal muscle mitochondria dysfunction in genetic neuromuscular disorders with cardiac phenotype. '''Int J Mol Sci''' 22:7349. - [[Ignatieva 2021 Int J Mol Sci |»Bioblast link«]]
<br>
:::::: [[File:Anoar 2021 Front Neurosci CORRECTION.jpg|400px|link=Anoar 2021 Front Neurosci]]
:::: '''10.''' Anoar S, Woodling NS, Niccoli T (2021) Mitochondria dysfunction in frontotemporal dementia/amyotrophic lateral sclerosis: lessons from ''Drosophila'' models. '''Front Neurosci''' 15:786076. - [[Anoar 2021 Front Neurosci |»Bioblast link«]]
<br>
:::::: [[File:Shields 2021 Front Cell Dev Biol CORRECTION.png|400px|link=Shields 2021 Front Cell Dev Biol]]
:::: '''11.''' Shields HJ, Traa A, Van Raamsdonk JM (2021) Beneficial and detrimental effects of reactive oxygen species on lifespan: a comprehensive review of comparative and experimental studies. '''Front Cell Dev Biol''' 9:628157. - [[Shields 2021 Front Cell Dev Biol |»Bioblast link«]]
<br>
:::::: [[File:Vesga 2021 Med Chem Res CORRECTION.png|400px|link=Vesga 2021 Med Chem Res]]
:::: '''12.''' Vesga LC, Silva AMP, Bernal CC, Mendez-Sánchez SC, Bohórquez ARR (2021) Tetrahydroquinoline/4,5-dihydroisoxazole hybrids with a remarkable effect over mitochondrial bioenergetic metabolism on melanoma cell line B16F10. '''Med Chem Res''' 30:2127–43. - [[Vesga 2021 Med Chem Res |»Bioblast link«]]
<br>
:::::: [[File:Gopalakrishnan 2020 Sci Rep CORRECTION.png|400px|link=Gopalakrishnan 2020 Sci Rep]]
:::: '''13.''' Gopalakrishnan S, Mehrvar S, Maleki S, Schmitt H, Summerfelt P, Dubis AM, Abroe B, Connor TB Jr, Carroll J, Huddleston W, Ranji M, Eells JT (2020) Photobiomodulation preserves mitochondrial redox state and is retinoprotective in a rodent model of retinitis pigmentosa. '''Sci Rep''' 10:20382. - [[Gopalakrishnan 2020 Sci Rep |»Bioblast link«]]
<br>
:::::: [[File:Aye 2022 Am J Obstet Gynecol CORRECTION.png|400px|link=Aye 2022 Am J Obstet Gynecol]]
:::: '''14.''' Aye ILMH, Aiken CE, Charnock-Jones DS, Smith GCS (2022) Placental energy metabolism in health and disease-significance of development and implications for preeclampsia. '''Am J Obstet Gynecol''' 226:S928-44. - [[Aye 2022 Am J Obstet Gynecol |»Bioblast link«]]
<br>
:::::: [[File:Lu 2023 Explor Res Hypothesis Med CORRECTION.png|400px|link=Lu 2023 Explor Res Hypothesis Med]]
:::: '''15.''' Lu F (2023) Hypothetical hydrogenase activity of human mitochondrial Complex I and its role in preventing cancer transformation. '''Explor Res Hypothesis Med''' 8:280-5. - [[Lu 2023 Explor Res Hypothesis Med |»Bioblast link«]]
<br>
:::::: [[File:Cojocaru 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Cojocaru 2023 Antioxidants (Basel)]]
:::: '''16.''' Cojocaru KA, Luchian I, Goriuc A, Antoci LM, Ciobanu CG, Popescu R, Vlad CE, Blaj M, Foia LG (2023) Mitochondrial dysfunction, oxidative stress, and therapeutic strategies in diabetes, obesity, and cardiovascular disease. '''Antioxidants (Basel)''' 12:658. - [[Cojocaru 2023 Antioxidants (Basel) |»Bioblast link«]]
<br>
:::::: [[File:Faria 2023 Pharmaceutics CORRECTION.png|400px|link=Faria 2023 Pharmaceutics]]
:::: '''17.''' Faria R, Boisguérin P, Sousa Â, Costa D (2023) Delivery systems for mitochondrial gene therapy: a review. '''Pharmaceutics''' 15:572. - [[Faria 2023 Pharmaceutics |»Bioblast link«]]
<br>
:::::: [[File:George 2023 Platelets CORRECTION.png|400px|link=George 2023 Platelets]]
:::: '''18.''' George CE, Saunders CV, Morrison A, Scorer T, Jones S, Dempsey NC (2023) Cold stored platelets in the management of bleeding: is it about bioenergetics? '''Platelets''' 34:2188969 - [[George 2023 Platelets |»Bioblast link«]]
<br>
:::::: [[File:Narine 2022 Front Cell Neurosci CORRECTION.png|400px|link=Narine 2022 Front Cell Neurosci]]
:::: '''19.''' Narine M, Colognato H (2022) Current insights into oligodendrocyte metabolism and its power to sculpt the myelin landscape. '''Front Cell Neurosci''' 16:892968. - [[Narine 2022 Front Cell Neurosci |»Bioblast link«]]
<br>
:::::: [[File:Sainero-Alcolado 2022 Cell Death Differ CORRECTION.png|400px|link=Sainero-Alcolado 2022 Cell Death Differ]]
:::: '''20.''' Sainero-Alcolado L, Liaño-Pons J, Ruiz-Pérez MV, Arsenian-Henriksson M (2022) Targeting mitochondrial metabolism for precision medicine in cancer. '''Cell Death Differ''' 29:1304-17. - [[Sainero-Alcolado 2022 Cell Death Differ |»Bioblast link«]]
<br>
:::::: [[File:Nguyen 2021 Brief Bioinform CORRECTION.png|400px|link=Nguyen 2021 Brief Bioinform]]
:::: '''21.''' Nguyen TT, Nguyen DK, Ou YY (2021) Addressing data imbalance problems in ligand-binding site prediction using a variational autoencoder and a convolutional neural network. '''Brief Bioinform''' 22:bbab277. - [[Nguyen 2021 Brief Bioinform |»Bioblast link«]]
<br>
:::::: [[File:Prasuhn 2021 Front Cell Dev Biol CORRECTION.png|400px|link=Prasuhn 2021 Front Cell Dev Biol]]
:::: '''22.''' Prasuhn J, Davis RL, Kumar KR (2021) Targeting mitochondrial impairment in Parkinson's disease: challenges and opportunities. '''Front Cell Dev Biol''' 8:615461. - [[Prasuhn 2021 Front Cell Dev Biol |»Bioblast link«]]
<br>
:::::: [[File:Gallinat 2022 Int J Mol Sci CORRECTION.png|400px|link=Gallinat 2022 Int J Mol Sci]]
:::: '''23.''' Gallinat A, Vilahur G, Padró T, Badimon L (2022) Network-assisted systems biology analysis of the mitochondrial proteome in a pre-clinical model of ischemia, revascularization and post-conditioning. '''Int J Mol Sci''' 23:2087. - [[Gallinat 2022 Int J Mol Sci |»Bioblast link«]]
<br>
:::::: [[File:Turton 2021 Expert Opinion Orphan Drugs CORRECTION.png|400px|link=Turton 2021 Expert Opinion Orphan Drugs]]
:::: '''24.''' Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA (2021) Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. '''Expert Opinion Orphan Drugs''' 9:151-60. - [[Turton 2021 Expert Opinion Orphan Drugs |»Bioblast link«]]
<br>
:::::: [[File:Keidar 2023 Front Physiol CORRECTION.png|400px|link=Keidar 2023 Front Physiol]]
:::: '''25.''' Keidar N, Peretz NK, Yaniv Y (2023) Ca<sup>2+</sup> pushes and pulls energetics to maintain ATP balance in atrial cells: computational insights. '''Front Physiol''' 14:1231259. - [[Keidar 2023 Front Physiol |»Bioblast link«]]
<br>
:::::: [[File:Chakrabarty 2021 Cell Stem Cell 3 CORRECTION.png|400px|link=Chakrabarty 2021 Cell Stem Cell]]
:::: '''26.''' Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. '''Cell Stem Cell''' 28:394-408. - [[Chakrabarty 2021 Cell Stem Cell |»Bioblast link«]]
<br>
:::::: [[File:Vargas-Mendoza 2021 Life (Basel) CORRECTION.png|400px|link=Vargas-Mendoza 2021 Life (Basel)]]
:::: '''27.''' Vargas-Mendoza N, Angeles-Valencia M, Morales-González Á, Madrigal-Santillán EO, Morales-Martínez M, Madrigal-Bujaidar E, Álvarez-González I, Gutiérrez-Salinas J, Esquivel-Chirino C, Chamorro-Cevallos G, Cristóbal-Luna JM, Morales-González JA (2021) Oxidative stress, mitochondrial function and adaptation to exercise: new perspectives in nutrition. '''Life (Basel)''' 11:1269. - [[Vargas-Mendoza 2021 Life (Basel) |»Bioblast link«]]
<br>
:::::: [[File:Egan 2023 Physiol Rev CORRECTION.png|400px|link=Egan 2023 Physiol Rev]]
:::: '''28.''' Egan B, Sharples AP (2023) Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. '''Physiol Rev''' 103:2057-2170. - [[Egan 2023 Physiol Rev |»Bioblast link«]]
<br>
:::::: [[File:Han 2021 Am J Respir Cell Mol Biol CORRECTION.png|400px|link=Han 2021 Am J Respir Cell Mol Biol]]
:::: '''29.''' Han S, Chandel NS (2021) Lessons from cancer metabolism for pulmonary arterial hypertension and fibrosis. '''Am J Respir Cell Mol Biol''' 65:134-45. - [[Han 2021 Am J Respir Cell Mol Biol |»Bioblast link«]]
<br>
:::::: [[File:Lakovou 2022 Front Aging Neurosci CORRECTION.png|400px|link=Iakovou 2022 Front Aging Neurosci]]
:::: '''30.''' Iakovou E, Kourti M (2022) A comprehensive overview of the complex role of oxidative stress in aging, the contributing environmental stressors and emerging antioxidant therapeutic interventions. '''Front Aging Neurosci''' 14:827900. - [[Iakovou 2022 Front Aging Neurosci |»Bioblast link«]]
<br>
:::::: [[File:Jayasankar 2022 ACS Omega CORRECTION.png|400px|link=Jayasankar 2022 ACS Omega]]
:::: '''31.''' Jayasankar V, Vrdoljak N, Roma A, Ahmed N, Tcheng M, Minden MD, Spagnuolo PA (2022) Novel mango ginger bioactive (2,4,6-trihydroxy-3,5-diprenyldihydrochalcone) inhibits mitochondrial metabolism in combination with Avocatin B. '''ACS Omega''' 7:1682-93. - [[Jayasankar 2022 ACS Omega |»Bioblast link«]]
<br>
:::::: [[File:Yuan 2022 Oxid Med Cell Longev CORRECTION.png|400px|link=Yuan 2022 Oxid Med Cell Longev]]
:::: '''32.''' Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J (2022) Mitochondrial stress in metabolic inflammation: modest benefits and full losses. '''Oxid Med Cell Longev''' 2022:8803404. - [[Yuan 2022 Oxid Med Cell Longev |»Bioblast link«]]
<br>
:::::: [[File:Yin 2021 FASEB J CORRECTION.png|400px|link=Yin 2021 FASEB J]]
:::: '''33.''' Yin M, O'Neill LAJ (2021) The role of the electron transport chain in immunity. '''FASEB J''' 35:e21974. - [[Yin 2021 FASEB J |»Bioblast link«]]
<br>
== Doubles ==
:::::: [[File:Chen 2014 Circ Res CORRECTION.png|400px|link=Chen 2014 Circ Res]]
:::: '''1.''' Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. '''Circ Res''' 114:524-37. - [[Chen 2014 Circ Res |»Bioblast link«]]
<br>
:::::: [[File:Chen 2022 Am J Physiol Cell Physiol CORRECTION.png|400px|link=Chen 2022 Am J Physiol Cell Physiol]]
:::: '''2.''' Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. '''Am J Physiol Cell Physiol''' 322:C12-23. - [[Chen 2022 Am J Physiol Cell Physiol |»Bioblast link«]]
<br>
<br>
:::::: [[File:Chen 2022 Int J Mol Sci CORRECTION.png|400px|link=Chen 2022 Int J Mol Sci]]
:::: '''1.''' Chen TH, Koh KY, Lin KM, Chou CK (2022) Mitochondrial dysfunction as an underlying cause of skeletal muscle disorders. '''Int J Mol Sci''' 23:12926. - [[Chen 2022 Int J Mol Sci |»Bioblast link«]]
<br>
:::::: [[File:Schniertshauer 2023 Curr Issues Mol Biol CORRECTION.jpg.png|400px|link=Schniertshauer 2023 Curr Issues Mol Biol]]
:::: '''2.''' Schniertshauer D, Wespel S, Bergemann J (2023) Natural mitochondria targeting substances and their effect on cellular antioxidant system as a potential benefit in mitochondrial medicine for prevention and remediation of mitochondrial dysfunctions. '''Curr Issues Mol Biol''' 45:3911-32. - [[Schniertshauer 2023 Curr Issues Mol Biol |»Bioblast link«]]
<br>
:::: [[Gnaiger_2023_MitoFit_CII#Beyond_version_6 |'''and more ..''']]
{{MitoPedia concepts
{{MitoPedia concepts
|mitopedia concept=MiP concept
|mitopedia concept=MiP concept

Latest revision as of 08:21, 22 March 2024


high-resolution terminology - matching measurements at high-resolution


Complex II ambiguities

Description

CII-ambiguities Graphical abstract.png

The current narrative that the reduced coenzymes NADH and FADH2 feed electrons from the tricarboxylic acid (TCA) cycle into the mitochondrial electron transfer system can create ambiguities around respiratory Complex CII. Succinate dehydrogenase or CII reduces FAD to FADH2 in the canonical forward TCA cycle. However, some graphical representations of the membrane-bound electron transfer system (ETS) depict CII as the site of oxidation of FADH2. This leads to the false believe that FADH2 generated by electron transferring flavoprotein (CETF) in fatty acid oxidation and mitochondrial glycerophosphate dehydrogenase (CGpDH) feeds electrons into the ETS through CII. In reality, NADH and succinate produced in the TCA cycle are the substrates of Complexes CI and CII, respectively, and the reduced flavin groups FMNH2 and FADH2 are downstream products of CI and CII, respectively, carrying electrons from CI and CII into the Q-junction. Similarly, CETF and CGpDH feed electrons into the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature call for quality control, to secure scientific standards in current communications on bioenergetics and support adequate clinical applications.

Abbreviation: CII ambiguities

Reference: Gnaiger E (2024) Complex II ambiguities ― FADH2 in the electron transfer system. J Biol Chem 300: 105470. https://doi.org/10.1016/j.jbc.2023.105470

» Links: Ambiguity crisis, Complex I and hydrogen ion ambiguities in the electron transfer system

A game of cards

33 copies or variations of a CII ambiguity theme
Martell 2023 Nat Commun CORRECTION.png
1. Martell E, Kuzmychova H, Kaul E, Senthil H, Chowdhury SR, Morrison LC, Fresnoza A, Zagozewski J, Venugopal C, Anderson CM, Singh SK, Banerji V, Werbowetski-Ogilvie TE, Sharif T (2023) Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 medulloblastoma. Nat Commun 14:2502. - »Bioblast link«


Solhaug 2023 Cytotechnology CORRECTION.png
2. Solhaug A, Gjessing M, Sandvik M, Eriksen GS (2023) The gill epithelial cell lines RTgill-W1, from Rainbow trout and ASG-10, from Atlantic salmon, exert different toxicity profiles towards rotenone. Cytotechnology 75:63-75. - »Bioblast link«


Fahimi 2022 Trends in Chemistry CORRECTION.png
3. Fahimi P, Matta CF (2022) The hot mitochondrion paradox: reconciling theory and experiment. Trends in Chemistry 4:4-20. - »Bioblast link«


Foo 2022 Trends Microbiol CORRECTION.png
4. Foo J, Bellot G, Pervaiz S, Alonso S (2022) Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol 30:679-92. - »Bioblast link«


Joshi 2022 Biomolecules CORRECTION.png
5. Joshi A, Ito T, Picard D, Neckers L (2022) The mitochondrial HSP90 paralog TRAP1: structural dynamics, interactome, role in metabolic regulation, and inhibitors. Biomolecules 12:880. - »Bioblast link«


Manickam 2022 J Control Release CORRECTION.png
6. Manickam DS (2022) Delivery of mitochondria via extracellular vesicles - a new horizon in drug delivery. J Control Release 343:400-7. - »Bioblast link«


Wu 2022 Neuromolecular Med CORRECTION.png
7. Wu Z, Ho WS, Lu R (2022) Targeting mitochondrial oxidative phosphorylation in glioblastoma therapy. Neuromolecular Med 24:18-22. - »Bioblast link«


Yang 2022 J Cleaner Production CORRECTION.png
8. Yang Y, Zhang X, Hu X, Zhao J, Chen X, Wei X, Yu X (2022) Analysis of the differential metabolic pathway of cultured Chlorococcum humicola with hydroquinone toxic sludge extract. J Cleaner Production 370:133486. - »Bioblast link«


Ignatieva 2021 Int J Mol Sci CORRECTION.png
9. Ignatieva E, Smolina N, Kostareva A, Dmitrieva R (2021) Skeletal muscle mitochondria dysfunction in genetic neuromuscular disorders with cardiac phenotype. Int J Mol Sci 22:7349. - »Bioblast link«


Anoar 2021 Front Neurosci CORRECTION.jpg
10. Anoar S, Woodling NS, Niccoli T (2021) Mitochondria dysfunction in frontotemporal dementia/amyotrophic lateral sclerosis: lessons from Drosophila models. Front Neurosci 15:786076. - »Bioblast link«


Shields 2021 Front Cell Dev Biol CORRECTION.png
11. Shields HJ, Traa A, Van Raamsdonk JM (2021) Beneficial and detrimental effects of reactive oxygen species on lifespan: a comprehensive review of comparative and experimental studies. Front Cell Dev Biol 9:628157. - »Bioblast link«


Vesga 2021 Med Chem Res CORRECTION.png
12. Vesga LC, Silva AMP, Bernal CC, Mendez-Sánchez SC, Bohórquez ARR (2021) Tetrahydroquinoline/4,5-dihydroisoxazole hybrids with a remarkable effect over mitochondrial bioenergetic metabolism on melanoma cell line B16F10. Med Chem Res 30:2127–43. - »Bioblast link«


Gopalakrishnan 2020 Sci Rep CORRECTION.png
13. Gopalakrishnan S, Mehrvar S, Maleki S, Schmitt H, Summerfelt P, Dubis AM, Abroe B, Connor TB Jr, Carroll J, Huddleston W, Ranji M, Eells JT (2020) Photobiomodulation preserves mitochondrial redox state and is retinoprotective in a rodent model of retinitis pigmentosa. Sci Rep 10:20382. - »Bioblast link«


Aye 2022 Am J Obstet Gynecol CORRECTION.png
14. Aye ILMH, Aiken CE, Charnock-Jones DS, Smith GCS (2022) Placental energy metabolism in health and disease-significance of development and implications for preeclampsia. Am J Obstet Gynecol 226:S928-44. - »Bioblast link«


Lu 2023 Explor Res Hypothesis Med CORRECTION.png
15. Lu F (2023) Hypothetical hydrogenase activity of human mitochondrial Complex I and its role in preventing cancer transformation. Explor Res Hypothesis Med 8:280-5. - »Bioblast link«


Cojocaru 2023 Antioxidants (Basel) CORRECTION.png
16. Cojocaru KA, Luchian I, Goriuc A, Antoci LM, Ciobanu CG, Popescu R, Vlad CE, Blaj M, Foia LG (2023) Mitochondrial dysfunction, oxidative stress, and therapeutic strategies in diabetes, obesity, and cardiovascular disease. Antioxidants (Basel) 12:658. - »Bioblast link«


Faria 2023 Pharmaceutics CORRECTION.png
17. Faria R, Boisguérin P, Sousa Â, Costa D (2023) Delivery systems for mitochondrial gene therapy: a review. Pharmaceutics 15:572. - »Bioblast link«


George 2023 Platelets CORRECTION.png
18. George CE, Saunders CV, Morrison A, Scorer T, Jones S, Dempsey NC (2023) Cold stored platelets in the management of bleeding: is it about bioenergetics? Platelets 34:2188969 - »Bioblast link«


Narine 2022 Front Cell Neurosci CORRECTION.png
19. Narine M, Colognato H (2022) Current insights into oligodendrocyte metabolism and its power to sculpt the myelin landscape. Front Cell Neurosci 16:892968. - »Bioblast link«


Sainero-Alcolado 2022 Cell Death Differ CORRECTION.png
20. Sainero-Alcolado L, Liaño-Pons J, Ruiz-Pérez MV, Arsenian-Henriksson M (2022) Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ 29:1304-17. - »Bioblast link«


Nguyen 2021 Brief Bioinform CORRECTION.png
21. Nguyen TT, Nguyen DK, Ou YY (2021) Addressing data imbalance problems in ligand-binding site prediction using a variational autoencoder and a convolutional neural network. Brief Bioinform 22:bbab277. - »Bioblast link«


Prasuhn 2021 Front Cell Dev Biol CORRECTION.png
22. Prasuhn J, Davis RL, Kumar KR (2021) Targeting mitochondrial impairment in Parkinson's disease: challenges and opportunities. Front Cell Dev Biol 8:615461. - »Bioblast link«


Gallinat 2022 Int J Mol Sci CORRECTION.png
23. Gallinat A, Vilahur G, Padró T, Badimon L (2022) Network-assisted systems biology analysis of the mitochondrial proteome in a pre-clinical model of ischemia, revascularization and post-conditioning. Int J Mol Sci 23:2087. - »Bioblast link«


Turton 2021 Expert Opinion Orphan Drugs CORRECTION.png
24. Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA (2021) Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. Expert Opinion Orphan Drugs 9:151-60. - »Bioblast link«


Keidar 2023 Front Physiol CORRECTION.png
25. Keidar N, Peretz NK, Yaniv Y (2023) Ca2+ pushes and pulls energetics to maintain ATP balance in atrial cells: computational insights. Front Physiol 14:1231259. - »Bioblast link«


Chakrabarty 2021 Cell Stem Cell 3 CORRECTION.png
26. Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell 28:394-408. - »Bioblast link«


Vargas-Mendoza 2021 Life (Basel) CORRECTION.png
27. Vargas-Mendoza N, Angeles-Valencia M, Morales-González Á, Madrigal-Santillán EO, Morales-Martínez M, Madrigal-Bujaidar E, Álvarez-González I, Gutiérrez-Salinas J, Esquivel-Chirino C, Chamorro-Cevallos G, Cristóbal-Luna JM, Morales-González JA (2021) Oxidative stress, mitochondrial function and adaptation to exercise: new perspectives in nutrition. Life (Basel) 11:1269. - »Bioblast link«


Egan 2023 Physiol Rev CORRECTION.png
28. Egan B, Sharples AP (2023) Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. Physiol Rev 103:2057-2170. - »Bioblast link«


Han 2021 Am J Respir Cell Mol Biol CORRECTION.png
29. Han S, Chandel NS (2021) Lessons from cancer metabolism for pulmonary arterial hypertension and fibrosis. Am J Respir Cell Mol Biol 65:134-45. - »Bioblast link«


Lakovou 2022 Front Aging Neurosci CORRECTION.png
30. Iakovou E, Kourti M (2022) A comprehensive overview of the complex role of oxidative stress in aging, the contributing environmental stressors and emerging antioxidant therapeutic interventions. Front Aging Neurosci 14:827900. - »Bioblast link«


Jayasankar 2022 ACS Omega CORRECTION.png
31. Jayasankar V, Vrdoljak N, Roma A, Ahmed N, Tcheng M, Minden MD, Spagnuolo PA (2022) Novel mango ginger bioactive (2,4,6-trihydroxy-3,5-diprenyldihydrochalcone) inhibits mitochondrial metabolism in combination with Avocatin B. ACS Omega 7:1682-93. - »Bioblast link«


Yuan 2022 Oxid Med Cell Longev CORRECTION.png
32. Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J (2022) Mitochondrial stress in metabolic inflammation: modest benefits and full losses. Oxid Med Cell Longev 2022:8803404. - »Bioblast link«


Yin 2021 FASEB J CORRECTION.png
33. Yin M, O'Neill LAJ (2021) The role of the electron transport chain in immunity. FASEB J 35:e21974. - »Bioblast link«



Doubles

Chen 2014 Circ Res CORRECTION.png
1. Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. Circ Res 114:524-37. - »Bioblast link«


Chen 2022 Am J Physiol Cell Physiol CORRECTION.png
2. Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. Am J Physiol Cell Physiol 322:C12-23. - »Bioblast link«



Chen 2022 Int J Mol Sci CORRECTION.png
1. Chen TH, Koh KY, Lin KM, Chou CK (2022) Mitochondrial dysfunction as an underlying cause of skeletal muscle disorders. Int J Mol Sci 23:12926. - »Bioblast link«


Schniertshauer 2023 Curr Issues Mol Biol CORRECTION.jpg.png
2. Schniertshauer D, Wespel S, Bergemann J (2023) Natural mitochondria targeting substances and their effect on cellular antioxidant system as a potential benefit in mitochondrial medicine for prevention and remediation of mitochondrial dysfunctions. Curr Issues Mol Biol 45:3911-32. - »Bioblast link«



and more ..


MitoPedia concepts: MiP concept 





MitoPedia topics: Enzyme, Substrate and metabolite 


Labels:






MitoPedia:FAT4BRAIN