Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Mettauer 2001 J Am Coll Cardiol"

From Bioblast
(Created page with "{{Publication |title=Mettauer B, Zoll J, Sanchez H, Lampert E, Ribera F, Veksler V, Bigard X, Mateo P, Epailly E, Lonsdorfer J, Ventura-Clapier R (2001) Oxidative capacity of...")
 
Line 16: Line 16:
|editor=[[Gnaiger E]],
|editor=[[Gnaiger E]],
}}
}}
{{Labeling
__TOC__
|area=Respiration, Exercise physiology;nutrition;life style
== MitoEAGLE ''V''<sub>O<sub>2</sub>max</sub>/BME database ==
|diseases=Cardiovascular
|organism=Human
|tissues=Skeletal muscle
|preparations=Intact organism, Permeabilized tissue
|couplingstates=LEAK, OXPHOS
|pathways=N
|additional=MitoEAGLE BME,
}}
== MitoEAGLE ''V''<sub>O2max</sub>/BME data base ==


:::* Human vastus lateralis
:::* Human vastus lateralis
Line 32: Line 23:
:::* 46.9 years
:::* 46.9 years
:::* Active
:::* Active
:::* ''h'' = 1.72 m
:::* ''H'' = 1.72 m
:::* ''m'' = 71.5 kg
:::* ''M'' = 71.5 kg
:::* [[BME]] = 1.20
:::* [[BME]] = 0.20
:::* BMI = 24.2 kg·m<sup>-2</sup>
:::* BMI = 24.2 kg·m<sup>-2</sup>
:::* ''V''<sub>O2max/BM</sub> = 46.2 mL·min<sup>-1</sup>·kg<sup>-1</sup> (= ''V''<sub>O2peak/BM</sub>/0.93)
:::* ''V''<sub>O<sub>2</sub>max/''M''</sub> = 46.2 mL·min<sup>-1</sup>·kg<sup>-1</sup> (= ''V''<sub>O2peak/BM</sub>/0.93)
:::* Permeabilized muscle fibres; 22 °C; GM<sub>''P''</sub>; ''m''<sub>d</sub>; conversions: [[Gnaiger 2009 Int J Biochem Cell Biol]]
:::* Permeabilized muscle fibres; 22 °C; GM<sub>''P''</sub>; ''m''<sub>d</sub>; conversions: [[Gnaiger 2009 Int J Biochem Cell Biol]]
:::* ''J''<sub>O2,''P''</sub>(NS) = 137.8 µmol·s<sup>-1</sup>·kg<sup>-1</sup> wet muscle mass (37 °C)
:::* ''J''<sub>O<sub>2</sub>,''P''</sub>(NS) = 137.8 µmol·s<sup>-1</sup>·kg<sup>-1</sup> wet muscle mass (37 °C)
::::* ''J''<sub>O2,''P''</sub>(GM) = 100.6 µmol·s<sup>-1</sup>·kg<sup>-1</sup> wet muscle mass (37 °C)
::::* ''J''<sub>O<sub>2</sub>,''P''</sub>(GM) = 100.6 µmol·s<sup>-1</sup>·kg<sup>-1</sup> wet muscle mass (37 °C)
::::* ''J''<sub>O2,''P''</sub>(NS) = ''J''<sub>O2,''P''</sub>(GM)/0.73
::::* ''J''<sub>O<sub>2</sub>,''P''</sub>(NS) = ''J''<sub>O2,''P''</sub>(GM)/0.73
::::* Fiber wet mass to dry mass ratio = 3.5 ([[N'Guessan 2004 Mol Cell Biochem]])
::::* Fiber wet mass to dry mass ratio = 3.5 ([[N'Guessan 2004 Mol Cell Biochem]])
----
----
Line 47: Line 38:
:::* 51.2 years
:::* 51.2 years
:::* Sedentary
:::* Sedentary
:::* ''h'' = 1.76 m
:::* ''H'' = 1.76 m
:::* ''m'' = 87.2 kg
:::* ''M'' = 87.2 kg
:::* [[BME]] = 1.37
:::* [[BME]] = 0.37
:::* BMI = 28.2 kg·m<sup>-2</sup>
:::* BMI = 28.2 kg·m<sup>-2</sup>
:::* ''V''<sub>O2max/BM</sub> =  29.4 mL·min<sup>-1</sup>·kg<sup>-1</sup> (= ''V''<sub>O2peak/BM</sub>/0.93)
:::* ''V''<sub>O<sub>2</sub>max/''M''</sub> =  29.4 mL·min<sup>-1</sup>·kg<sup>-1</sup> (= ''V''<sub>O<sub>2</sub>peak/''M''</sub>/0.93)
:::* Permeabilized muscle fibres; 22 °C; GM<sub>''P''</sub>; ''m''<sub>d</sub>; conversions: [[Gnaiger 2009 Int J Biochem Cell Biol]]
:::* Permeabilized muscle fibres; 22 °C; GM<sub>''P''</sub>; ''m''<sub>d</sub>; conversions: [[Gnaiger 2009 Int J Biochem Cell Biol]]
:::* ''J''<sub>O2,''P''</sub>(NS) = 58.5 µmol·s<sup>-1</sup>·kg<sup>-1</sup> wet muscle mass (37 °C)
:::* ''J''<sub>O<sub>2</sub>,''P''</sub>(NS) = 58.5 µmol·s<sup>-1</sup>·kg<sup>-1</sup> wet muscle mass (37 °C)
::::* ''J''<sub>O2,''P''</sub>(GM) = 42.7 µmol·s<sup>-1</sup>·kg<sup>-1</sup> wet muscle mass (37 °C)
::::* ''J''<sub>O<sub>2</sub>,''P''</sub>(GM) = 42.7 µmol·s<sup>-1</sup>·kg<sup>-1</sup> wet muscle mass (37 °C)
::::* ''J''<sub>O2,''P''</sub>(NS) = ''J''<sub>O2,''P''</sub>(GM)/0.73
::::* ''J''<sub>O<sub>2</sub>,''P''</sub>(NS) = ''J''<sub>O2,''P''</sub>(GM)/0.73
::::* Fiber wet mass to dry mass ratio = 3.5 ([[N'Guessan 2004 Mol Cell Biochem]])
::::* Fiber wet mass to dry mass ratio = 3.5 ([[N'Guessan 2004 Mol Cell Biochem]])
----
----
{{References: BME and VO2max}}
{{Labeling
|area=Respiration, Exercise physiology;nutrition;life style
|diseases=Cardiovascular
|organism=Human
|tissues=Skeletal muscle
|preparations=Intact organism, Permeabilized tissue
|couplingstates=LEAK, OXPHOS
|pathways=N
|additional=MitoEAGLE BME, BMI, VO2max, BME
}}

Revision as of 04:21, 8 February 2020

Publications in the MiPMap
Mettauer B, Zoll J, Sanchez H, Lampert E, Ribera F, Veksler V, Bigard X, Mateo P, Epailly E, Lonsdorfer J, Ventura-Clapier R (2001) Oxidative capacity of skeletal muscle in heart failure patients versus sedentary or active control subjects. J Am Coll Cardiol 38:947-54.

» PMID: 11583863 Open Access

Mettauer B, Zoll J, Sanchez H, Lampert E, Ribera F, Veksler V, Bigard X, Mateo P, Epailly E, Lonsdorfer J, Ventura-Clapier R (2001) J Am Coll Cardiol

Abstract: OBJECTIVES: We investigated the in situ properties of muscle mitochondria using the skinned fiber technique in patients with chronic heart failure (CHF) and sedentary (SED) and more active (ACT) controls to determine: 1) whether respiration of muscle tissue in the SED and ACT groups correlates with peak oxygen consumption (pVO(2)), 2) whether it is altered in CHF, and 3) whether this results from deconditioning or CHF-specific myopathy.

BACKGROUND: Skeletal muscle oxidative capacity is thought to partly determine the exercise capacity in humans and its decrease to participate in exercise limitation in CHF.

METHODS: M. Vastus lateralis biopsies were obtained from 11 SED group members, 10 ACT group members and 15 patients with CHF at the time of transplantation, saponine-skinned and placed in an oxygraphic chamber to measure basal and maximal adenosine diphosphate (ADP)-stimulated (V(max)) respiration rates and to assess mitochondrial regulation by ADP. All patients received angiotensin-converting enzyme (ACE) inhibitors.

RESULTS: The pVO(2) differed in the order CHF < SED < ACT. Compared with SED, muscle alterations in CHF appeared as decreased citrate synthase, creatine kinase and lactate dehydrogenase, whereas the myosin heavy chain profile remained unchanged. However, muscle oxidative capacity (V(max), CHF: 3.53 +/- 0.38; SED: 3.17 +/- 0.48; ACT: 7.47 +/- 0.73, micromol O(2).min(-1).g(-1)dw, p < 0.001 vs. CHF and SED) and regulation were identical in patients in the CHF and SED groups, differing in the ACT group only. In patients with CHF, the correlation between pVO(2) and muscle oxidative capacity observed in controls was displaced toward lower pVO(2) values.

CONCLUSIONS: In these patients, the disease-specific muscle metabolic impairments derive mostly from extramitochondrial mechanisms that disrupt the normal symmorphosis relations. The possible roles of ACE inhibitors and level of activity are discussed.

Bioblast editor: Gnaiger E

MitoEAGLE VO2max/BME database

  • Human vastus lateralis
  • 2 females & 8 males
  • 46.9 years
  • Active
  • H = 1.72 m
  • M = 71.5 kg
  • BME = 0.20
  • BMI = 24.2 kg·m-2
  • VO2max/M = 46.2 mL·min-1·kg-1 (= VO2peak/BM/0.93)
  • Permeabilized muscle fibres; 22 °C; GMP; md; conversions: Gnaiger 2009 Int J Biochem Cell Biol
  • JO2,P(NS) = 137.8 µmol·s-1·kg-1 wet muscle mass (37 °C)
  • JO2,P(GM) = 100.6 µmol·s-1·kg-1 wet muscle mass (37 °C)
  • JO2,P(NS) = JO2,P(GM)/0.73
  • Fiber wet mass to dry mass ratio = 3.5 (N'Guessan 2004 Mol Cell Biochem)

  • Human vastus lateralis
  • 1 female & 10 males
  • 51.2 years
  • Sedentary
  • H = 1.76 m
  • M = 87.2 kg
  • BME = 0.37
  • BMI = 28.2 kg·m-2
  • VO2max/M = 29.4 mL·min-1·kg-1 (= VO2peak/M/0.93)
  • Permeabilized muscle fibres; 22 °C; GMP; md; conversions: Gnaiger 2009 Int J Biochem Cell Biol
  • JO2,P(NS) = 58.5 µmol·s-1·kg-1 wet muscle mass (37 °C)
  • JO2,P(GM) = 42.7 µmol·s-1·kg-1 wet muscle mass (37 °C)
  • JO2,P(NS) = JO2,P(GM)/0.73
  • Fiber wet mass to dry mass ratio = 3.5 (N'Guessan 2004 Mol Cell Biochem)

References: BME and VO2max

» VO2max
 Reference
Bakkman 2007 ActaPhysiolBakkman L, Sahlin K, Holmberg HC, Tonkonogi M (2007) Quantitative and qualitative adaptation of human skeletal muscle mitochondria to hypoxic compared with normoxic training at the same relative work rate. Acta Physiol (Oxford) 190:243–51.
Boushel 2007 DiabetologiaBoushel RC, Gnaiger E, Schjerling P, Skovbro M, Kraunsoee R, Dela F (2007) Patients with Type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50:790-6.
Chambers 2020 J Appl Physiol (1985)Chambers TL, Burnett TR, Raue U, Lee GA, Finch WH, Graham BM, Trappe TA, Trappe S (2020) Skeletal muscle size, function, and adiposity with lifelong aerobic exercise. J Appl Physiol (1985) 128:368–78.
Daussin 2008 Am J Physiol Regul Integr Comp PhysiolDaussin FN, Zoll J, Dufour SP, Ponsot E, Lonsdorfer-Wolf E, Doutreleau S, Mettauer B, Piquard F, Geny B, Richard R (2008) Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol 295:R264-72.
Garnier 2005 FASEB JGarnier A, Fortin D, Zoll J, N'Guessan B, Mettauer B, Lampert E, Veksler V, Ventura-Clapier R (2005) Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J 19:43-52.
Gnaiger 2015 Scand J Med Sci SportsGnaiger E, Boushel R, Søndergaard H, Munch-Andersen T, Damsgaard R, Hagen C, Díez-Sánchez C, Ara I, Wright-Paradis C, Schrauwen P, Hesselink M, Calbet JAL, Christiansen M, Helge JW, Saltin B (2015) Mitochondrial coupling and capacity of oxidative phosphorylation in skeletal muscle of Inuit and caucasians in the arctic winter. https://doi.org/10.1111/sms.12612
Gnaiger 2019 MiP2019
Erich Gnaiger
OXPHOS capacity in human muscle tissue and body mass excess – the MitoEAGLE mission towards an integrative database (Version 6; 2020-01-12).
Loe 2013 PLOS ONELoe H, Rognmo Ø, Saltin B, Wisløff U (2013) Aerobic capacity reference data in 3816 healthy men and women 20-90 years. PLOS ONE 8:e64319.
Mettauer 2001 J Am Coll CardiolMettauer B, Zoll J, Sanchez H, Lampert E, Ribera F, Veksler V, Bigard X, Mateo P, Epailly E, Lonsdorfer J, Ventura-Clapier R (2001) Oxidative capacity of skeletal muscle in heart failure patients versus sedentary or active control subjects. J Am Coll Cardiol 38:947-54.
Mogensen 2006 J PhysiolMogensen M, Bagger M, Pedersen PK, Fernström M, Sahlin K (2006) Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. J Physiol 571:669-81.
N'Guessan 2004 Mol Cell BiochemN'Guessan B, Zoll J, Ribera F, Ponsot E, Lampert E, Ventura-Clapier R, Veksler V, Mettauer B (2004) Evaluation of quantitative and qualitative aspects of mitochondrial function in human skeletal and cardiac muscles. Mol Cell Biochem 256-257:267-80.
Pesta 2011 Am J Physiol Regul Integr Comp PhysiolPesta D, Hoppel F, Macek C, Messner H, Faulhaber M, Kobel C, Parson W, Burtscher M, Schocke M, Gnaiger E (2011) Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol 301:R1078–87.
Ponsot 2006 J Appl Physiol (1985)Ponsot E, Dufour SP, Zoll J, Doutrelau S, N'Guessan B, Geny B, Hoppeler H, Lampert E, Mettauer B, Ventura-Clapier R, Richard R (2006) Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle. J Appl Physiol (1985) 100:1249-57.
Pribis 2010 NutrientsPribis P, Burtnack CA, McKenzie SO, Thayer J (2010) Trends in body fat, body mass index and physical fitness among male and female college students. Nutrients 2:1075-85.
Raboel 2009 Diabetes Obes MetabRaboel R, Hojberg PM, Almdal T, Boushel RC, Haugaard SB, Madsbad S, Dela F (2009) Improved glycaemic control decreases inner mitochondrial membrane leak in type 2 diabetes. Diabetes Obes Metab 11:355-60.
Rasmussen 2001 Am J Physiol Endocrinol MetabRasmussen UF, Rasmussen HN, Krustrup P, Quistorff B, Saltin B, Bangsbo J (2001) Aerobic metabolism of human quadriceps muscle: in vivo data parallel measurements on isolated mitochondria. Am J Physiol Endocrinol Metab 280:E301-7.
Rasmussen 2003 Eur J PhysiolRasmussen UF, Krustrup P, Kjaer M, Rasmussen HN (2003) Human skeletal muscle mitochondrial metabolism in youth and senescence: no signs of functional changes in ATP formation and mitochondrial oxidative capacity. Pflugers Arch – Eur J Physiol 446:270-78.
Zoll 2002 J PhysiolZoll J, Sanchez H, N'Guessan B, Ribera F, Lampert E, Bigard X, Surrurier B, Fortin D, Geny B, Veksler V, Ventura-Clapier R, Mettauer B (2002) Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J Physiol 543:191-200.


Labels: MiParea: Respiration, Exercise physiology;nutrition;life style  Pathology: Cardiovascular 

Organism: Human  Tissue;cell: Skeletal muscle  Preparation: Intact organism, Permeabilized tissue 


Coupling state: LEAK, OXPHOS  Pathway:


MitoEAGLE BME, BMI, VO2max, BME