Hashizume 2015 Sci Rep: Difference between revisions

From Bioblast
(Created page with "{{Publication |title=Hashizume O, Ohnishi S, Mito T, Shimizu A, Iashikawa K, Nakada K, Soda M, Mano H, Togayachi S, Miyoshi H, Okita K, Hayashi J (2015) Epigenetic regulation of ...")
ย 
No edit summary
ย 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{Publication
{{Publication
|title=Hashizume O, Ohnishi S, Mito T, Shimizu A, Iashikawa K, Nakada K, Soda M, Mano H, Togayachi S, Miyoshi H, Okita K, Hayashi J (2015) Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects. Sci Rep 5:10434. ย 
|title=Hashizume O, Ohnishi S, Mito T, Shimizu A, Iashikawa K, Nakada K, Soda M, Mano H, Togayachi S, Miyoshi H, Okita K, Hayashi J (2015) Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects. Sci Rep 5:10434.
|info=[http://www.ncbi.nlm.nih.gov/pubmed/26000717 PMID :26000717 Open Access]
|info=[http://www.ncbi.nlm.nih.gov/pubmed/26000717 PMID: 26000717 Open Acces]
|authors=Hashizume O, Ohnishi S, Mito T, Shimizu A, Iashikawa K, Nakada K, Soda M, Mano H, Togayachi S, Miyoshi H, Okita K, Hayashi J
|authors=Hashizume O, Ohnishi S, Mito T, Shimizu A, Iashikawa K, Nakada K, Soda M, Mano H, Togayachi S, Miyoshi H, Okita K, Hayashi J
|year=2015
|year=2015
|journal=Sci Rep
|journal=Sci Rep
|abstract=Age-associated accumulation of somatic mutations in mitochondrial DNA (mtDNA) has been proposed to be responsible for the age-associated mitochondrial respiration defects found in elderly human subjects. We carried out reprogramming of human fibroblast lines derived from elderly subjects by generating their induced pluripotent stem cells (iPSCs), and examined another possibility, namely that these aging phenotypes are controlled not by mutations but by epigenetic regulation. Here, we show that reprogramming of elderly fibroblasts restores age-associated mitochondrial respiration defects, indicating that these aging phenotypes are reversible and are similar to differentiation phenotypes in that both are controlled by epigenetic regulation, not by mutations in either the nuclear or the mitochondrial genome. Microarray screening revealed that epigenetic downregulation of the nuclear-coded GCAT gene, which is involved in glycine production in mitochondria, is partly responsible for these aging phenotypes. Treatment of elderly fibroblasts with glycine effectively prevented the expression of these aging phenotypes. ย 
|abstract=Age-associated accumulation of somatic mutations in mitochondrial DNA (mtDNA) has been proposed to be responsible for the age-associated mitochondrial respiration defects found in elderly human subjects. We carried out reprogramming of human fibroblast lines derived from elderly subjects by generating their induced pluripotent stem cells (iPSCs), and examined another possibility, namely that these aging phenotypes are controlled not by mutations but by epigenetic regulation. Here, we show that reprogramming of elderly fibroblasts restores age-associated mitochondrial respiration defects, indicating that these aging phenotypes are reversible and are similar to differentiation phenotypes in that both are controlled by epigenetic regulation, not by mutations in either the nuclear or the mitochondrial genome. Microarray screening revealed that epigenetic downregulation of the nuclear-coded GCAT gene, which is involved in glycine production in mitochondria, is partly responsible for these aging phenotypes. Treatment of elderly fibroblasts with glycine effectively prevented the expression of these aging phenotypes.
}}
}}
{{Labeling
{{Labeling
|area=Respiration, mtDNA;mt-genetics
|area=Respiration, mtDNA;mt-genetics
|diseases=Aging;senescence
|organism=Human
|organism=Human
|model cell lines=Fibroblast
|tissues=Fibroblast
|diseases=Aging;senescence
}}
}}

Latest revision as of 15:33, 9 November 2016

Publications in the MiPMap
Hashizume O, Ohnishi S, Mito T, Shimizu A, Iashikawa K, Nakada K, Soda M, Mano H, Togayachi S, Miyoshi H, Okita K, Hayashi J (2015) Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects. Sci Rep 5:10434.

ยป PMID: 26000717 Open Acces

Hashizume O, Ohnishi S, Mito T, Shimizu A, Iashikawa K, Nakada K, Soda M, Mano H, Togayachi S, Miyoshi H, Okita K, Hayashi J (2015) Sci Rep

Abstract: Age-associated accumulation of somatic mutations in mitochondrial DNA (mtDNA) has been proposed to be responsible for the age-associated mitochondrial respiration defects found in elderly human subjects. We carried out reprogramming of human fibroblast lines derived from elderly subjects by generating their induced pluripotent stem cells (iPSCs), and examined another possibility, namely that these aging phenotypes are controlled not by mutations but by epigenetic regulation. Here, we show that reprogramming of elderly fibroblasts restores age-associated mitochondrial respiration defects, indicating that these aging phenotypes are reversible and are similar to differentiation phenotypes in that both are controlled by epigenetic regulation, not by mutations in either the nuclear or the mitochondrial genome. Microarray screening revealed that epigenetic downregulation of the nuclear-coded GCAT gene, which is involved in glycine production in mitochondria, is partly responsible for these aging phenotypes. Treatment of elderly fibroblasts with glycine effectively prevented the expression of these aging phenotypes.


Labels: MiParea: Respiration, mtDNA;mt-genetics  Pathology: Aging;senescence 

Organism: Human  Tissue;cell: Fibroblast 





Cookies help us deliver our services. By using our services, you agree to our use of cookies.