Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Covi 2007 Physiol Biochem Zool"

From Bioblast
Line 5: Line 5:
|year=2007
|year=2007
|journal=Physiol Biochem Zool
|journal=Physiol Biochem Zool
|abstract=We examine herein the contribution of V-ATPase activity to the energy budget of aerobically developing embryos of Artemia franciscana and discuss the results in the context of quiescence under anoxia. (31)P-NMR analysis indicates that intracellular pH and NTP levels are unaffected by acute incubation of dechorionated embryos with the V-ATPase inhibitor, bafilomycin A(1). Bafilomycin A(1) also has no significant effect on oxygen consumption by isolated mitochondria. Taken together, these data indicate that bafilomycin does not affect energy-producing pathways in the developing embryo. However, the V-ATPase inhibitor exhibits a concentration-dependent inhibition of oxygen consumption in aerobic embryos. A conservative analysis of respirometric data indicates that proton pumping by the V-ATPase, and processes immediately dependent on this activity, constitutes approximately 31% of the aerobic energy budget of the preemergent embryo. Given the complete absence of detectable Na(+)K(+)-ATPase activity during the first hours of aerobic development, it is plausible that the V-ATPase is performing a role in both the acidification of intracellular compartments and the energization of plasma membranes. Importantly, the high metabolic cost associated with maintaining these diverse proton gradients requires that V-ATPase activity be downregulated under anoxia in order to attain the almost complete metabolic depression observed in the quiescent embryo.
|abstract=We examine herein the contribution of V-ATPase activity to the energy budget of aerobically developing embryos of ''Artemia franciscana'' and discuss the results in the context of quiescence under anoxia. (31)P-NMR analysis indicates that intracellular pH and NTP levels are unaffected by acute incubation of dechorionated embryos with the V-ATPase inhibitor, bafilomycin A(1). Bafilomycin A(1) also has no significant effect on oxygen consumption by isolated mitochondria. Taken together, these data indicate that bafilomycin does not affect energy-producing pathways in the developing embryo. However, the V-ATPase inhibitor exhibits a concentration-dependent inhibition of oxygen consumption in aerobic embryos. A conservative analysis of respirometric data indicates that proton pumping by the V-ATPase, and processes immediately dependent on this activity, constitutes approximately 31% of the aerobic energy budget of the preemergent embryo. Given the complete absence of detectable Na(+)K(+)-ATPase activity during the first hours of aerobic development, it is plausible that the V-ATPase is performing a role in both the acidification of intracellular compartments and the energization of plasma membranes. Importantly, the high metabolic cost associated with maintaining these diverse proton gradients requires that V-ATPase activity be downregulated under anoxia in order to attain the almost complete metabolic depression observed in the quiescent embryo.
|keywords=V-ATPase, bafilomycin, Artemia franciscana,Β  crustaceans, brine shrimp, anoxia, embryos
|keywords=V-ATPase, bafilomycin, brine shrimp, anoxia, embryos
|mipnetlab=US LA Baton Rouge Hand SC
|mipnetlab=US LA Baton Rouge Hand SC
}}
}}
{{Labeling
{{Labeling
|organism=Other Non-Mammal
|taxonomic group=Crustaceans
|ecomodel=Artemia
|preparations=Isolated Mitochondria
|preparations=Isolated Mitochondria
|injuries=Anaerobic metabolism
|injuries=Anaerobic metabolism

Revision as of 17:58, 8 August 2013

Publications in the MiPMap
Covi JA, Hand SC (2007) Energizing an invertebrate embryo: bafilomycin-dependent respiration and the metabolic cost of proton pumping by the V-ATPase. Physiol Biochem Zool 80: 422-432.

Β» PMID: 17508337

Covi JA, Hand SC (2007) Physiol Biochem Zool

Abstract: We examine herein the contribution of V-ATPase activity to the energy budget of aerobically developing embryos of Artemia franciscana and discuss the results in the context of quiescence under anoxia. (31)P-NMR analysis indicates that intracellular pH and NTP levels are unaffected by acute incubation of dechorionated embryos with the V-ATPase inhibitor, bafilomycin A(1). Bafilomycin A(1) also has no significant effect on oxygen consumption by isolated mitochondria. Taken together, these data indicate that bafilomycin does not affect energy-producing pathways in the developing embryo. However, the V-ATPase inhibitor exhibits a concentration-dependent inhibition of oxygen consumption in aerobic embryos. A conservative analysis of respirometric data indicates that proton pumping by the V-ATPase, and processes immediately dependent on this activity, constitutes approximately 31% of the aerobic energy budget of the preemergent embryo. Given the complete absence of detectable Na(+)K(+)-ATPase activity during the first hours of aerobic development, it is plausible that the V-ATPase is performing a role in both the acidification of intracellular compartments and the energization of plasma membranes. Importantly, the high metabolic cost associated with maintaining these diverse proton gradients requires that V-ATPase activity be downregulated under anoxia in order to attain the almost complete metabolic depression observed in the quiescent embryo. β€’ Keywords: V-ATPase, bafilomycin, brine shrimp, anoxia, embryos

β€’ O2k-Network Lab: US LA Baton Rouge Hand SC


Labels:

Stress:Anaerobic metabolism"Anaerobic metabolism" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property. 


Preparation: Isolated Mitochondria"Isolated Mitochondria" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property. 

Regulation: Respiration"Respiration" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 


HRR: Oxygraph-2k