Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Vásquez-Vivar 1997 FEBS Letters"

From Bioblast
(Created page with "{{Publication |title=Vásquez-Vivar J, Hogg N, Pritchard Jr KA, Martasek P, Kalyanaraman B (1997) Superoxide anion formation from lucigenin: an electron spin resonance spin-tr...")
 
Line 7: Line 7:
|abstract=Lucigenin (LC2+) is frequently used as a superoxide probe. To detect superoxide, lucigenin must be reduced to the lucigenin cation radical (LC.+). We show, using the phosphorylated spin trap 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO), that lucigenin stimulates NADPH-dependent superoxide production by endothelial nitric oxide synthase (eNOS). The formation of the DEPMPO-superoxide adduct is calcium/calmodulin independent. DEPMPO-superoxide adduct formation is inhibited by diphenyleneiodonium and is abolished by superoxide dismutase. It is likely that eNOS/NADPH can reduce lucigenin to LC.+ which reduces oxygen to superoxide. Consequently, lucigenin cannot be used to measure superoxide formation.
|abstract=Lucigenin (LC2+) is frequently used as a superoxide probe. To detect superoxide, lucigenin must be reduced to the lucigenin cation radical (LC.+). We show, using the phosphorylated spin trap 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO), that lucigenin stimulates NADPH-dependent superoxide production by endothelial nitric oxide synthase (eNOS). The formation of the DEPMPO-superoxide adduct is calcium/calmodulin independent. DEPMPO-superoxide adduct formation is inhibited by diphenyleneiodonium and is abolished by superoxide dismutase. It is likely that eNOS/NADPH can reduce lucigenin to LC.+ which reduces oxygen to superoxide. Consequently, lucigenin cannot be used to measure superoxide formation.
}}
}}
== Cited by ==
{{Template:Cited by Komlodi 2021 MitoFit AmR}}
{{Labeling
{{Labeling
|additional=MitoFit 2021 AmR
|additional=MitoFit 2021 AmR
}}
}}

Revision as of 18:18, 6 June 2021

Publications in the MiPMap
Vásquez-Vivar J, Hogg N, Pritchard Jr KA, Martasek P, Kalyanaraman B (1997) Superoxide anion formation from lucigenin: an electron spin resonance spin-trapping study. FEBS Letters 403:127-30.

» PMID:9042951 Open Access

Vásquez-Vivar J, Hogg N, Pritchard Jr KA, Martasek P, Kalyanaraman B (1997) FEBS Letters

Abstract: Lucigenin (LC2+) is frequently used as a superoxide probe. To detect superoxide, lucigenin must be reduced to the lucigenin cation radical (LC.+). We show, using the phosphorylated spin trap 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO), that lucigenin stimulates NADPH-dependent superoxide production by endothelial nitric oxide synthase (eNOS). The formation of the DEPMPO-superoxide adduct is calcium/calmodulin independent. DEPMPO-superoxide adduct formation is inhibited by diphenyleneiodonium and is abolished by superoxide dismutase. It is likely that eNOS/NADPH can reduce lucigenin to LC.+ which reduces oxygen to superoxide. Consequently, lucigenin cannot be used to measure superoxide formation.

Cited by

  • Komlódi T, Schmitt S, Zdrazilova L, Donnelly C, Zischka H, Gnaiger E. Oxygen dependence of hydrogen peroxide production in isolated mitochondria and permeabilized cells. MitoFit Preprints (in prep).

Labels:






MitoFit 2021 AmR