Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Has abstract" with value "Chronic kidney disease (CKD) leads to musculoskeletal impairments that are impacted by muscle metabolism. We tested the hypothesis that 10-weeks of voluntary wheel running can improve skeletal muscle mitochondria activity and function in a rat model of CKD. Groups included (n = 12-14/group): (1) normal littermates (NL); (2) CKD, and; (3) CKD-10 weeks of voluntary wheel running (CKD-W). At 35-weeks old the following assays were performed in the soleus and extensor digitorum longus (EDL): targeted metabolomics, mitochondrial respiration, and protein expression. Amino acid-related compounds were reduced in CKD muscle and not restored by physical activity. Mitochondrial respiration in the CKD soleus was increased compared to NL, but not impacted by physical activity. The EDL respiration was not different between NL and CKD, but increased in CKD-wheel rats compared to CKD and NL groups. Our results demonstrate that the soleus may be more susceptible to CKD-induced changes of mitochondrial complex content and respiration, while in the EDL, these alterations were in response the physiological load induced by mild physical activity. Future studies should focus on therapies to improve mitochondrial function in both types of muscle to determine if such treatments can improve the ability to adapt to physical activity in CKD.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Avin 2021 Sci Rep  + (Chronic kidney disease (CKD) leads to muscChronic kidney disease (CKD) leads to musculoskeletal impairments that are impacted by muscle metabolism. We tested the hypothesis that 10-weeks of voluntary wheel running can improve skeletal muscle mitochondria activity and function in a rat model of CKD. Groups included (n = 12-14/group): (1) normal littermates (NL); (2) CKD, and; (3) CKD-10 weeks of voluntary wheel running (CKD-W). At 35-weeks old the following assays were performed in the soleus and extensor digitorum longus (EDL): targeted metabolomics, mitochondrial respiration, and protein expression. Amino acid-related compounds were reduced in CKD muscle and not restored by physical activity. Mitochondrial respiration in the CKD soleus was increased compared to NL, but not impacted by physical activity. The EDL respiration was not different between NL and CKD, but increased in CKD-wheel rats compared to CKD and NL groups. Our results demonstrate that the soleus may be more susceptible to CKD-induced changes of mitochondrial complex content and respiration, while in the EDL, these alterations were in response the physiological load induced by mild physical activity. Future studies should focus on therapies to improve mitochondrial function in both types of muscle to determine if such treatments can improve the ability to adapt to physical activity in CKD.lity to adapt to physical activity in CKD.)