Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Skemiene 2020 J Bioenerg Biomembr

From Bioblast
Revision as of 15:33, 9 March 2020 by Plangger Mario (talk | contribs) (Created page with "{{Publication |title=Skemiene K, Pampuscenko K, Rekuviene E, Borutaite V (2020) Protective effects of anthocyanins against brain ischemic damage. J Bioenerg Biomembr [Epub ahe...")
(diff) โ† Older revision | Latest revision (diff) | Newer revision โ†’ (diff)
Publications in the MiPMap
Skemiene K, Pampuscenko K, Rekuviene E, Borutaite V (2020) Protective effects of anthocyanins against brain ischemic damage. J Bioenerg Biomembr [Epub ahead of print].

ยป PMID: 32128684

Skemiene K, Pampuscenko K, Rekuviene E, Borutaite V (2020) J Bioenerg Biomembr

Abstract: Anthocyanins are considered as bioactive components of plant-based diets that provide protection against ischemic cardiovascular pathologies by mechanisms dependent on their antioxidant and reductive capacities. However, it is not clear whether similar anthocyanin-mediated mechanisms can provide protection against ischemia-induced brain mitochondrial injury and cell death. In this study, we compared effects of three cyanidin-3-glycosides - glucoside (Cy3G), galactoside (Cy3Gal) and rutinoside (Cy3R), with pelargonxidin-3-glucoside (Pg3G) and found that at 10-20 ฮผM concentrations they have no direct effect on respiratory functions of mitochondria isolated from normal or ischemia-damaged rat brain slices. However, intravenous injection of Cy3Gal and Cy3G (0,025 mg/kg or 0,05 mg/kg what matches 10 ฮผM or 20 ฮผM respectively) but not Cy3R in rats protected against ischemia-induced caspase activation and necrotic cell death, and reduced infarct size in cerebral cortex and cerebellum. These effects correlated with cytochrome c reducing capacity of cyanidin-3-glycosides. In contrast, intravenous injection of 0,025 mg/kg Pg3G which has the lowest cytochrome c reducing capacity among investigated anthocyanins, had no effect on ischemia-induced caspase activation and necrosis but reduced brain infarct size whereas intravenous injection of 0,05 mg/kg of Pg3G slightly promoted necrosis in the brain. Our data suggest that reductive rather than antioxidant capacities of anthocyanins may be important components in providing protection against ischemic brain damage. โ€ข Keywords: Anthocyanins, Brain ischemia, Cell death, Mitochondria, Neuroprotection, Respiration โ€ข Bioblast editor: Plangger M


Labels: MiParea: Respiration 





HRR: Oxygraph-2k 

Labels, 2020-03