Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Rosenfeld 2002 Yeast

From Bioblast
Publications in the MiPMap
Rosenfeld E, Beauvoit B, Rigoulet M, Salmon JM.(2002). Non-respiratory oxygen consumption pathways in anaerobically-grown Saccharomyces cerevisiae: evidence and partial characterization. Yeast 19(15):1299-321.

Β» http://www.ncbi.nlm.nih.gov/pubmed/12402241

Rosenfeld E, Beauvoit B, Rigoulet M, Salmon JM (2002) Yeast

Abstract: Despite the absence of an alternative mitochondrial ubiquinol oxidase, Saccharomyces cerevisiae consumes oxygen in an antimycin A- and cyanide-resistant manner. Cyanide-resistant respiration is typically used when the classical respiratory chain is impaired or absent (i.e in anaerobically-grown cells shifted to normoxia or in respiratory-deficient cells). We characterized the non-respiratory oxygen consumption pathways operating during anoxic-normoxic transitions in glucose-repressed resting cells. High-resolution oxygraphy confirmed that the cellular non-respiratory oxygen consumption pathway is sensitive to high concentrations of cyanide, azide, SHAM and TTFA, and revealed several new characteristics. First, the use of sterol biosynthesis inhibitors showed that this pathway makes a considerable contribution (about 25%) to both endogenous and glucose-dependent oxygen consumption. Anaerobically-grown glucose-repressed cells exhibited high apparent oxygen affinities (K(m) for oxygen = 0.5-1 micro M), even in mutants deficient in respiration or sterol synthesis. Exogeneously added glucose and endogenous stored carbohydrates were the only substrates that were efficient for cellular oxygen consumption (apparent K(m) for exogenous glucose = 2-3 mM). On the other hand, fluorimetric measurements of the cellular NAD(P)H pool showed that the cellular oxygen consumption (sterol biosynthesis and unknown pathways) was dependent more on the intracellular level of NADPH than of NADH. High oxygen affinity NADPH-dependent oxygen consumption systems were thought to be mainly localized in microsomal membranes, and several data indicated a significant contribution made by uncoupled p450 systems, together with still uncharacterized systems. Such activities are associated in vitro with a massive production of O(2) (.-) and, to a lower extent, H(2)O(2) and a likely concomitant production of H(2)O. β€’ Keywords: Saccharomyces cerevisiae / oxygen consumption / non-respiratory pathways / AOX / ROX / ROS/ P450


Labels:

Stress:Hypoxia, RONS; Oxidative Stress"RONS; Oxidative Stress" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property.  Organism: Yeast; Fungi"Yeast; Fungi" is not in the list (Human, Pig, Mouse, Rat, Guinea pig, Bovines, Horse, Dog, Rabbit, Cat, ...) of allowed values for the "Mammal and model" property.  Tissue;cell: Blood Cell; Suspension Culture"Blood Cell; Suspension Culture" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property.  Preparation: Intact Cell; Cultured; Primary"Intact Cell; Cultured; Primary" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property., Oxidase; Biochemical Oxidation"Oxidase; Biochemical Oxidation" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property.  Enzyme: Complex I, Complex II; Succinate Dehydrogenase"Complex II; Succinate Dehydrogenase" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property., Complex III, Complex IV; Cytochrome c Oxidase"Complex IV; Cytochrome c Oxidase" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property.  Regulation: Respiration; OXPHOS; ETS Capacity"Respiration; OXPHOS; ETS Capacity" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., Aerobic and Anaerobic Metabolism"Aerobic and Anaerobic Metabolism" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., Redox State"Redox State" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 


HRR: Oxygraph-2k