Pereyra 2021 J Lipid Res

From Bioblast
Revision as of 20:44, 29 March 2021 by Plangger Mario (talk | contribs)
Jump to navigation Jump to search
Publications in the MiPMap
Pereyra AS, Harris KL, Soepriatna AH, Waterbury QA, Bharathi SS, Zhang Y, Fisher-Wellman KH, Goergen CJ, Goetzman ES, Ellis JM (2021) Octanoate is differentially metabolized in liver and muscle and fails to rescue cardiomyopathy in CPT2 deficiency. J Lipid Res [Epub ahead of print].

» PMID: 33757734 Open Access

Pereyra Andrea S, Harris Kate L, Soepriatna Arvin H, Waterbury Quin A, Bharathi Sivakama S, Zhang Yuxun, Fisher-Wellman Kelsey H, Goergen Craig J, Goetzman Eric S, Ellis Jessica M (2021) J Lipid Res

Abstract: Long-chain fatty acid oxidation is frequently impaired in primary and systemic metabolic diseases affecting the heart, thus therapeutically increasing reliance on normally minor energetic substrates, such as ketones and medium chain fatty acids, could benefit cardiac health. However, the molecular fundamentals of this therapy are not fully known. Here, we explored the ability of octanoate, an eight-carbon medium-chain fatty acid known as an unregulated mitochondrial energetic substrate, to ameliorate cardiac hypertrophy in long-chain fatty acid oxidation deficient hearts due to carnitine palmitoyltransferase 2 deletion (Cpt2M-/-). CPT2 converts acylcarnitines to acyl-CoAs in the mitochondrial matrix for oxidative bioenergetic metabolism. In Cpt2M-/- mice, high octanoate-ketogenic diet failed to alleviate myocardial hypertrophy, dysfunction, and acylcarnitine accumulation suggesting that this alternative substrate is not sufficiently compensatory for energy provision. Aligning this outcome, we identified a major metabolic distinction between muscles and liver, wherein heart and skeletal muscle mitochondria were unable to oxidize free octanoate but liver was able to oxidize free octanoate. Liver mitochondria, but not heart or muscle, highly expressed medium-chain acyl-CoA synthetases, potentially enabling octanoate activation for oxidation and circumventing acylcarnitine-shuttling. Conversely, octanoylcarnitine was oxidized by liver, skeletal muscle, and heart, with rates in heart 4-fold greater than liver and, in muscles, was not dependent upon CPT2. Together, these data suggest that dietary octanoate cannot rescue CPT2-deficient cardiac disease. These data also suggest the existence of tissue-specific mechanisms for octanoate oxidative metabolism, with liver being independent of free carnitine availability while cardiac and skeletal muscles depend on carnitine but not on CPT2.

Keywords: Carnitine palmitoyltransferase, Carnitine-shuttle, Fatty acid oxidation, Medium-chain fatty acids, Mitochondria Bioblast editor: Plangger M O2k-Network Lab: US PA Pittsburgh Goetzman ES


Labels: MiParea: Respiration, Genetic knockout;overexpression 


Organism: Mouse  Tissue;cell: Heart, Skeletal muscle, Liver  Preparation: Homogenate, Isolated mitochondria 

Regulation: Fatty acid  Coupling state: LEAK, OXPHOS  Pathway: F, N  HRR: Oxygraph-2k 

2021-03