Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Pasdois 2007 Am J Physiol Heart Circ Physiol"

From Bioblast
Line 18: Line 18:
|topics=Respiration; OXPHOS; ETS Capacity, Aerobic and Anaerobic Metabolism
|topics=Respiration; OXPHOS; ETS Capacity, Aerobic and Anaerobic Metabolism
|instruments=Oxygraph-2k
|instruments=Oxygraph-2k
|articletype=Protocol; Manual
}}
}}

Revision as of 14:01, 20 October 2010

Publications in the MiPMap
Pasdois P, Quinlan CL, Rissa A, Tariosse L, Vinassa B, Costa AD, Pierre SV, Dos Santos P, Garlid KD (2007) Ouabain protects rat hearts against ischemia-reperfusion injury via pathway involving src kinase, mitoKATP, and ROS. Am. J. Physiol. Heart Circ. Physiol. 292: H1470- H1478.

Β» PMID: 17098831

Pasdois P, Quinlan CL, Rissa A, Tariosse L, Vinassa B, Costa AD, Pierre SV, Dos Santos P, Garlid KD (2007) Am. J. Physiol. Heart Circ. Physiol.

Abstract: We showed recently that mitochondrial ATP-dependent K+ channel (mitoKATP) opening is required for the inotropic response to ouabain. Because mitoKATP opening is also required for most forms of cardioprotection, we investigated whether exposure to ouabain was cardioprotective. We also began to map the signaling pathways linking ouabain binding to Na+-K+-ATPase with the opening of mitoKATP. In Langendorff-perfused rat hearts, 10-80 Β΅M ouabain given before the onset of ischemia resulted in cardioprotection against ischemia-reperfusion injury, as documented by an improved recovery of contractile function and a reduction of infarct size. In skinned cardiac fibers, a ouabain-induced protection of mitochondrial outer membrane integrity, adenine nucleotide compartmentation, and energy transfer efficiency was evidenced by a decreased release of cytochrome c and preserved half-saturation constant of respiration for ADP and adenine nucleotide translocase-mitochondrial creatine kinase coupling, respectively. Ouabain-induced positive inotropy was dose dependent over the range studied, whereas ouabain-induced cardioprotection was maximal at the lowest dose tested. Compared with bradykinin (BK)-induced preconditioning, ouabain was equally efficient. However, the two ligands clearly diverge in the intracellular steps leading to mitoKATP opening from their respective receptors. Thus BK-induced cardioprotection was blocked by inhibitors of cGMP-dependent protein kinase (PKG) or guanylyl cyclase (GC), whereas ouabain-induced protection was not blocked by either agent. Interestingly, however, ouabain-induced inotropy appears to require PKG and GC. Thus 5-hydroxydecanoate (a selective mitoKATP inhibitor), N-(2-mercaptopropionyl)glycine (MPG; a reactive oxygen species scavenger), ODQ (a GC inhibitor), PP2 (a src kinase inhibitor), and KT-5823 (a PKG inhibitor) abolished preconditioning by BK and blocked the inotropic response to ouabain. However, only PP2, 5-HD, and MPG blocked ouabain-induced cardioprotection. β€’ Keywords: Na+-K+-ATPase, Inotropy, Bradykinin, Signaling pathway, Reactive oxygen species


Labels:

Stress:Ischemia-Reperfusion; Preservation"Ischemia-Reperfusion; Preservation" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property.  Organism: Rat  Tissue;cell: Cardiac Muscle"Cardiac Muscle" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property.  Preparation: Intact Organ"Intact Organ" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property.  Enzyme: Complex IV; Cytochrome c Oxidase"Complex IV; Cytochrome c Oxidase" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property., Inner mtMembrane Transporter"Inner mtMembrane Transporter" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property.  Regulation: Respiration; OXPHOS; ETS Capacity"Respiration; OXPHOS; ETS Capacity" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., Aerobic and Anaerobic Metabolism"Aerobic and Anaerobic Metabolism" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 


HRR: Oxygraph-2k