Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Gnaiger 2011 Abstract-MonteVerita"

From Bioblast
Line 11: Line 11:
'''mt-function at ''V''<sub>O2max</sub>''': Aerobic capacity of the human leg muscle exceeds maximum O<sub>2</sub> uptake of isolated mitochondria [3] and v. lateralis during ''V''<sub>O2max</sub> [4]. Therefore, oxygen supply limits aerobic performance, proportional to the apparent mt-excess capacity [5]. mt-respiration is more sensitive to average ''p''<sub>O2</sub> in heterogenous tissues than under homogenous conditions in vitro. Tissue heterogeneity increases the kinetic dependence of flux on average intracellular ''p''<sub>O2</sub>. High mt-density reinforces the steepness of oxygen gradients and oxygen heterogeneity in the tissue, contributing to the O<sub>2</sub> limitation in athletic vs sedentary individuals at ''V''<sub>O2max</sub> [6]. This provides a functional rationale for the observation that hypoxia does not specifically trigger mt-biogenesis [7].
'''mt-function at ''V''<sub>O2max</sub>''': Aerobic capacity of the human leg muscle exceeds maximum O<sub>2</sub> uptake of isolated mitochondria [3] and v. lateralis during ''V''<sub>O2max</sub> [4]. Therefore, oxygen supply limits aerobic performance, proportional to the apparent mt-excess capacity [5]. mt-respiration is more sensitive to average ''p''<sub>O2</sub> in heterogenous tissues than under homogenous conditions in vitro. Tissue heterogeneity increases the kinetic dependence of flux on average intracellular ''p''<sub>O2</sub>. High mt-density reinforces the steepness of oxygen gradients and oxygen heterogeneity in the tissue, contributing to the O<sub>2</sub> limitation in athletic vs sedentary individuals at ''V''<sub>O2max</sub> [6]. This provides a functional rationale for the observation that hypoxia does not specifically trigger mt-biogenesis [7].


[[MitoCom#Acknowledgment|Contribution to K-Regio]] ''[[MitoCom_K-Regio|MitoCom Tyrol]]''.
[[MitoCom#Acknowledgment|Contribution to K-Regio]] ''[[MitoCom_O2k-Fluorometer|MitoCom Tyrol]]''.


[1] [[Gnaiger 2009 Int J Biochem Cell Biol|Gnaiger 2009]]; [[Lemieux_2011_Int J Biochem Cell Biol|Lemieux et al 2011 Int J Biochem Cell Biol]] ย 
[1] [[Gnaiger 2009 Int J Biochem Cell Biol|Gnaiger 2009]]; [[Lemieux_2011_Int J Biochem Cell Biol|Lemieux et al 2011 Int J Biochem Cell Biol]] ย 

Revision as of 07:36, 15 June 2015

Gnaiger E (2011) Mitochondrial respiratory capacity at maximum aerobic exercise levels: Are intracellular oxygen levels limiting? Abstract Monte Verita.

Link: The impact of hypoxia on cells, mice and men

Gnaiger E (2011)

Event: Monte Verita

Mitochondrial capacity: OXPHOS capacity is evaluated in isolated mitochondria (mt) and permeabilized cells with physiological substrate cocktails to reconstitute tricarboxylic acid cycle function. As a consequence, convergent electron flow from Complexes CI+II of the electron transfer system (ETS) to the Q-junction exerts an additive effect on flux [1].

Oxygen kinetics of mt-respiration: The apparent Km,O2 or c50 [ยตM] (p50 [kPa]) of mt-respiration increases linearly with respiratory capacity controlled by metabolic state, from 0.2 to 1.6 ยตM determined by high-resolution respirometry. O2 gradients are significant only in large cells including cardiomyocytes. The apparent p50 increases 100-fold in permeabilized muscle fibers due to diffusion gradients [2].

mt-function at VO2max: Aerobic capacity of the human leg muscle exceeds maximum O2 uptake of isolated mitochondria [3] and v. lateralis during VO2max [4]. Therefore, oxygen supply limits aerobic performance, proportional to the apparent mt-excess capacity [5]. mt-respiration is more sensitive to average pO2 in heterogenous tissues than under homogenous conditions in vitro. Tissue heterogeneity increases the kinetic dependence of flux on average intracellular pO2. High mt-density reinforces the steepness of oxygen gradients and oxygen heterogeneity in the tissue, contributing to the O2 limitation in athletic vs sedentary individuals at VO2max [6]. This provides a functional rationale for the observation that hypoxia does not specifically trigger mt-biogenesis [7].

Contribution to K-Regio MitoCom Tyrol.

[1] Gnaiger 2009; Lemieux et al 2011 Int J Biochem Cell Biol

[2] Gnaiger 2003; Scandurra, Gnaiger 2010 Adv Exp Med Biol.

[3] Rasmussen et al 2001 AJP.

[4] Boushel et al 2011 Mitochondrion.

[5] Gnaiger et al 1998 JEB.

[6] Richardson et al; Haseler et al JAP.

[7] Pesta et al 2011 AJP; Jacobs et al 2011 JAP.


โ€ข O2k-Network Lab: AT Innsbruck Gnaiger E


Labels: MiParea: Respiration 

Stress:Hypoxia  Organism: Human 


Regulation: O2"O2" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., Substrate  Coupling state: OXPHOS 

HRR: Oxygraph-2k