Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

E-L coupling efficiency

From Bioblast


high-resolution terminology - matching measurements at high-resolution


E-L coupling efficiency

Description

ET-pathway coupling efficiency The ET-pathway coupling efficiency (E-L coupling control factor) is a normalized flux ratio, j≈E = ≈E/E = (E-L)/E = 1-L/E. j≈E is 0.0 at zero coupling (L=E) and 1.0 at the limit of a fully coupled system (L=0). The background state is the LEAK state which is stimulated to ET-pathway reference state by uncoupler titration. LEAK states LN or LT may be stimulated first by saturating ADP (State P) with subsequent uncoupler titration to State E. The ET-pathway coupling efficiency is based on measurement of a coupling control ratio (LEAK control ratio, L/E), whereas the thermodynamic or ergodynamic efficiency of coupling between ATP production (DT phosphorylation) and oxygen consumption is based on measurement of the output/input flux ratio (~P/O2 ratio) and output/input force ratio (Gibbs force of phosphorylation/Gibbs force of oxidation). Biochemical coupling efficiency is either expressed as the ET-pathway coupling efficiency, j≈E, or OXPHOS coupling efficiency, j≈P, obtained in a coupling control protocol (phosphorylation control protocol). » MiPNet article

Abbreviation: j≈E

Reference: Flux control factor


MitoPedia concepts: Respiratory control ratio 


MitoPedia methods: Respirometry 

Biochemical coupling efficiency: from 0 to <1

Publications in the MiPMap
Gnaiger E (2015) Biochemical coupling efficiency: from 0 to <1. Mitochondr Physiol Network 2015-01-18.


OROBOROS (2015) MiPNet

Abstract: Zooming in on biochemical coupling efficiency, j≈E compared to j≈P.


O2k-Network Lab: AT Innsbruck Gnaiger E


Labels:




Regulation: Coupling efficiency;uncoupling  Coupling state: LEAK, ET-pathway"ET-pathway" is not in the list (LEAK, ROUTINE, OXPHOS, ET) of allowed values for the "Coupling states" property. 

HRR: Theory 


Quantification of coupling of mitochondrial respiration is a fundamental component of OXPHOS analysis.[1],[2] Biochemical coupling efficiency is distinguished from ergodynamic efficiency.[3],[4],[5]

Coupling control states for j≈E

» Respiratory state, ETS-competent pathway control state, Electron transfer system


Flux control ratio and flux control factor

» Flux control ratio, FCR, Flux control factor, FCF


Compare

mt-Preparations

OXPHOS coupling efficiency OXPHOS coupling efficiency, P-L control factor: j≈P = ≈P/P = (P-L)/P = 1-L/P
netOXPHOS control ratio netOXPHOS control ratio, ≈P/E control ratio: ≈P/E = (P-L)/E
OXPHOS OXPHOS capacity, P = -ROX

Intact cells

ROUTINE coupling efficiency ROUTINE coupling efficiency, (R-L or ≈R control factor): j≈R = ≈R/R = (R-L)/R = 1-L/R
netROUTINE control ratio netROUTINE control ratio, ≈R/E control ratio: ≈R/E = (R-L)/E
ROUTINE ROUTINE respiration, R = -ROX


References

  1. Gnaiger E (2014) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 4th ed. Mitochondr Physiol Network 19.12. OROBOROS MiPNet Publications, Innsbruck:80 pp. »Open Access«
  2. Gnaiger E. Is respiration uncoupled - noncoupled - dyscoupled? Mitochondr Physiol Network. »Uncoupler«
  3. Gnaiger E (1993) Nonequilibrium thermodynamics of energy transformations. Pure Appl Chem 65: 1983-2002. »Open Access«
  4. Gnaiger E (1993) Efficiency and power strategies under hypoxia. Is low efficiency at high glycolytic ATP production a paradox? In: Surviving Hypoxia: Mechanisms of Control and Adaptation. Hochachka PW, Lutz PL, Sick T, Rosenthal M, Van den Thillart G (eds) CRC Press, Boca Raton, Ann Arbor, London, Tokyo: 77-109. »Bioblast Access«
  5. Gnaiger E (2015) Cell ergometry: OXPHOS and ET-pathway coupling efficiency. Mitochondr Physiol Network 2015-01-18. »Bioblast link«


MitoPedia: related terms

Coupling control factors: biochemical efficiencies

OXPHOS coupling efficiency OXPHOS coupling efficiency, (P-L or ≈P control factor): j≈P = ≈P/P = (P-L)/P = 1-L/P
ROUTINE coupling efficiency ROUTINE coupling efficiency: j≈R = ≈R/R =(R-L)/R = 1-L/R
ETS coupling efficiency ETS coupling efficiency, E-L coupling control factor: j≈E = ≈E/E = (E-L)/E = 1-L/E

Coupling control factors: apparent excess capacity factors

Excess E-P capacity factor Excess E-P capacity factor, E-P coupling control factor: jExP = (E-P)/E = 1-P/E
Excess E-R capacity factor Excess E-R capacity factor, E-R coupling control factor: jExR = (E-R)/E = 1-R/E

Coupling control ratios

» Coupling control ratio
L/P coupling control ratio L/P coupling control ratio: L/P
L/R coupling control ratio L/R coupling control ratio, L/R
LEAK control ratio LEAK control ratio, L/E
OXPHOS control ratio OXPHOS control ratio, P/E
ROUTINE control ratio ROUTINE control ratio, R/E
netOXPHOS control ratio netOXPHOS control ratio, ≈P/E control ratio: ≈P/E = (P-L)/E
netROUTINE control ratio netROUTINE control ratio, ≈R/E control ratio: ≈R/E = (R-L)/E


List of publications: ET-pathway and LEAK