Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "E-R control efficiency"

From Bioblast
(25 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{MitoPedia
{{MitoPedia
|abbr=''j<sub>ExR</sub>''
|abbr=''j<sub>E-R</sub>''
|description=The apparent '''excess ETS capacity factor over ''R''''' (''E-R'' coupling control factor), ''j<sub>ExR</sub>'' = (''E-R'')/''E'' = 1-''R/E'', is an expression of the relative scope of increasing [[ROUTINE respiration]] in intact cells by uncoupling. ''j<sub>ExR</sub>'' = 0.0 for zero excess capacity when ''R''=''E''; ''j<sub>ExR</sub>'' = 1.0 for the maximum limit when ''R''=0. The [[ROUTINE]] state of intact cells is stimulated to [[ETS]] by [[uncoupler]] titration. Since ETS capacity is significantly higher than OXPHOS capacity in various cell types (as shown by '''''[[cell ergometry]]'''''), ''E-R'' or ''j<sub>ExR</sub>'' is not a reseve capacity available for the cell to increase oxidative phosphorylation, but strictly a scope (reserve?) for uncoupling respiration.
|description=[[Image:j(E-R).jpg|50 px|E-R control efficiency]] The '''''E-R'' control efficiency''', ''j<sub>E-R</sub>'' = (''E-R'')/''E'' = 1-''R/E'', is an expression of the relative scope of increasing [[ROUTINE respiration]] in living cells by uncoupling. ''j<sub>E-R</sub>'' = 0.0 for zero ''E-R'' reserve capacity when ''R''=''E''; ''j<sub>E-R</sub>'' = 1.0 for the maximum limit when ''R''=0. The [[ROUTINE]] state of living cells is stimulated to [[electron transfer pathway]] capacity by [[uncoupler]] titration, which yields the [[E-R reserve capacity |''E-R'' reserve capacity]]. Since ET capacity is significantly higher than OXPHOS capacity in various cell types (as shown by '''[[cell ergometry]]'''), ''j<sub>E-R</sub>'' is not a reserve capacity available for the cell to increase oxidative phosphorylation, but strictly a scope (reserve) for uncoupling respiration. Similarly, the apparent [[E-P excess ET capacity |''E-P'' excess ET capacity]] is not a respiratory reserve in the sense of oxidative phosphorylation.
|info=[[Flux control factor]]
|info=[[Flux control efficiency]]
}}
}}
{{MitoPedia methods
 
|mitopedia method=Respirometry
== Keywords ==
::::* Expand Bioblast links to '''''E-R'' control efficiency'''
{{Template:Keywords: Coupling control}}
 
{{MitoPedia concepts
|mitopedia concept=Respiratory control ratio
}}
}}
{{MitoPedia topics
 
|mitopedia topic=Respiratory control ratio
[[Category:Coupling control]]
}}
== Compare ==
* [[Excess E-P capacity factor |Excess ''E-P'' capacity factor]]
* ''More details:'' [[ETS coupling efficiency]]

Revision as of 01:19, 12 November 2020


high-resolution terminology - matching measurements at high-resolution


E-R control efficiency

Description

E-R control efficiency The E-R control efficiency, jE-R = (E-R)/E = 1-R/E, is an expression of the relative scope of increasing ROUTINE respiration in living cells by uncoupling. jE-R = 0.0 for zero E-R reserve capacity when R=E; jE-R = 1.0 for the maximum limit when R=0. The ROUTINE state of living cells is stimulated to electron transfer pathway capacity by uncoupler titration, which yields the E-R reserve capacity. Since ET capacity is significantly higher than OXPHOS capacity in various cell types (as shown by cell ergometry), jE-R is not a reserve capacity available for the cell to increase oxidative phosphorylation, but strictly a scope (reserve) for uncoupling respiration. Similarly, the apparent E-P excess ET capacity is not a respiratory reserve in the sense of oxidative phosphorylation.

Abbreviation: jE-R

Reference: Flux control efficiency


Keywords

  • Expand Bioblast links to E-R control efficiency


Questions.jpg


Click to expand or collaps
Bioblast links: Coupling control - >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>

1. Mitochondrial and cellular respiratory rates in coupling-control states

OXPHOS-coupled energy cycles. Source: The Blue Book
» Baseline state
Respiratory rate Defining relations Icon
OXPHOS capacity P = -Rox P.jpg mt-preparations
ROUTINE respiration R = -Rox R.jpg living cells
ET capacity E = -Rox E.jpg » Level flow
» Noncoupled respiration - Uncoupler
LEAK respiration L = -Rox L.jpg » Static head
» LEAK state with ATP
» LEAK state with oligomycin
» LEAK state without adenylates
Residual oxygen consumption Rox L = -Rox ROX.jpg
  • Chance and Williams nomenclature: respiratory states
» State 1 —» State 2 —» State 3 —» State 4 —» State 5

2. Flux control ratios related to coupling in mt-preparations and living cells

» Flux control ratio
» Coupling-control ratio
» Coupling-control protocol
FCR Definition Icon
L/P coupling-control ratio L/P L/P coupling-control ratio » Respiratory acceptor control ratio, RCR = P/L
L/R coupling-control ratio L/R L/R coupling-control ratio
L/E coupling-control ratio L/E L/E coupling-control ratio » Uncoupling-control ratio, UCR = E/L (ambiguous)
P/E control ratio P/E P/E control ratio
R/E control ratio R/E R/E control ratio » Uncoupling-control ratio, UCR = E/L
net P/E control ratio (P-L)/E net P/E control ratio
net R/E control ratio (R-L)/E net R/E control ratio

3. Net, excess, and reserve capacities of respiration

Respiratory net rate Definition Icon
P-L net OXPHOS capacity P-L P-L net OXPHOS capacity
R-L net ROUTINE capacity R-L R-L net ROUTINE capacity
E-L net ET capacity E-L E-L net ET capacity
E-P excess capacity E-P E-P excess capacity
E-R reserve capacity E-R E-R reserve capacity

4. Flux control efficiencies related to coupling-control ratios

» Flux control efficiency jZ-Y
» Background state
» Reference state
» Metabolic control variable
Coupling-control efficiency Definition Icon Canonical term
P-L control efficiency jP-L = (P-L)/P = 1-L/P P-L control efficiency P-L OXPHOS-flux control efficiency
R-L control efficiency jR-L = (R-L)/R = 1-L/R R-L control efficiency R-L ROUTINE-flux control efficiency
E-L coupling efficiency jE-L = (E-L)/E = 1-L/E E-L coupling efficiency E-L ET-coupling efficiency » Biochemical coupling efficiency
E-P control efficiency jE-P = (E-P)/E = 1-P/E E-P control efficiency E-P ET-excess flux control efficiency
E-R control efficiency jE-R = (E-R)/E = 1-R/E E-R control efficiency E-R ET-reserve flux control efficiency

5. General

» Basal respiration
» Cell ergometry
» Dyscoupled respiration
» Dyscoupling
» Electron leak
» Electron-transfer-pathway state
» Hyphenation
» Oxidative phosphorylation
» Oxygen flow
» Oxygen flux
» Permeabilized cells
» Phosphorylation system
» Proton leak
» Proton slip
» Respiratory state
» Uncoupling



MitoPedia concepts: Respiratory control ratio