Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Crisan 2008 Stem Cells"

From Bioblast
Line 15: Line 15:
|tissues=Endothelial; Epithelial; Mesothelial Cell
|tissues=Endothelial; Epithelial; Mesothelial Cell
|preparations=Intact Cell; Cultured; Primary
|preparations=Intact Cell; Cultured; Primary
|enzymes=Uncoupler Protein
|enzymes=Uncoupling protein
|kinetics=Inhibitor; Uncoupler
|kinetics=Inhibitor; Uncoupler
|topics=Respiration; OXPHOS; ETS Capacity
|topics=Respiration; OXPHOS; ETS Capacity
|discipline=Biomedicine
|discipline=Biomedicine
}}
}}

Revision as of 14:49, 17 November 2011

Publications in the MiPMap
Crisan M, Casteilla L, Lehr L, Carmona M, Paoloni-Giacobino A, Yap S, Sun B, Leger B, Logar A, Penicaud L, Schrauwen P, Cameron-Smith D, Russell AP, Peault B, Giacobino JP (2008) A reservoir of brown adipocyte progenitors in human skeletal muscle. Stem Cells. 26: 2425-2433.

Β» PMID: 18617684

Crisan M, Casteilla L, Lehr L, Carmona M, Paoloni-Giacobino A, Yap S, Sun B, Leger B, Logar A, Penicaud L, Schrauwen P, Cameron-Smith D, Russell AP, Peault B, Giacobino JP (2008) Stem Cells

Abstract: Brown adipose tissue uncoupling protein-1 (UCP1) plays a major role in the control of energy balance in rodents. It has long been thought, however, that there is no physiologically relevant UCP1 expression in adult humans. In this study we show, using an original approach consisting of sorting cells from various tissues and differentiating them in an adipogenic medium, that a stationary population of skeletal muscle cells expressing the CD34 surface protein can differentiate in vitro into genuine brown adipocytes with a high level of UCP1 expression and uncoupled respiration. These cells can be expanded in culture, and their UCP1 mRNA expression is strongly increased by cell-permeating cAMP derivatives and a peroxisome-proliferator-activated receptor-gamma (PPARgamma) agonist. Furthermore, UCP1 mRNA was detected in the skeletal muscle of adult humans, and its expression was increased in vivo by PPARgamma agonist treatment. All the studies concerning UCP1 expression in adult humans have until now been focused on the white adipose tissue. Here we show for the first time the existence in human skeletal muscle and the prospective isolation of progenitor cells with a high potential for UCP1 expression. The discovery of this reservoir generates a new hope of treating obesity by acting on energy dissipation. β€’ Keywords: Brown adipocytes, Human muscle

β€’ O2k-Network Lab: FR_Toulouse_Casteilla L, NL_Maastricht_Schrauwen P


Labels:


Organism: Human, Mouse  Tissue;cell: Endothelial; Epithelial; Mesothelial Cell"Endothelial; Epithelial; Mesothelial Cell" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property.  Preparation: Intact Cell; Cultured; Primary"Intact Cell; Cultured; Primary" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property.  Enzyme: Uncoupling protein  Regulation: Respiration; OXPHOS; ETS Capacity"Respiration; OXPHOS; ETS Capacity" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 


HRR: Oxygraph-2k