Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Chance 1961 J Biol Chem-I"

From Bioblast
Line 14: Line 14:
{{Labeling
{{Labeling
|organism=Guinea pig
|organism=Guinea pig
|tissues=Cardiac muscle, Hepatocyte; Liver, Kidney
|tissues=Cardiac muscle, Liver, Kidney
|preparations=Isolated Mitochondria
|preparations=Isolated Mitochondria
|couplingstates=OXPHOS
|couplingstates=OXPHOS

Revision as of 17:08, 25 February 2013

Publications in the MiPMap
Chance B, Hollunger G (1961) The interaction of energy and electron transfer reactions in mitochondria I. General properties and nature of the products of succinate-linked reduction of pyridine nucleotide. J Biol Chem 236: 1534-1543.

Β» PMID: 13692277 Open Access

Chance B, Hollunger G (1961) J Biol Chem

Abstract: A thermodynamically improbable reduction of pyridine nucleotide caused by the addition of succinate to isolated mitochondria has been demonstrated. The material so reduced exhibits kinetic responses, some of which can suggest its consideration as a member of the respiratory chain, but a quantitative examination of the kinetics of oxidation and reduction shows that only a small portion of the total respiratory activity in succinate oxidation passes through the diphosphopyridine nucleotide-linked pathway.

The nature of the reduction product has been examined in heart, liver, and guinea pig kidney mitochondria and is found to be material absorbing at 340 mΒ΅ and having a fluorescence emission maximum at 440 mΒ΅. Direct chemical assays on kidney mitochondria indicate that the reduced material is diphosphopyridine nucleotide. A preliminary evaluation of various hypotheses to explain this result leads us tentatively to reject hypotheses based upon a single pool of mitochondrial pyridine nucleotide in which diphosphopyridine nucleotide and succinate compete for oxidizing equivalents from the cytochrome chain.

Further indication of the complexities of this reaction is that respiration can be initiated by succinate without measurable pyridine nucleotide reduction and that a transition from aerobiosis in state 3 to anaerobiosis (state 5) can lead to a higher oxidation level of pyridine nucleotide than was observed aerobically in state 4. These observations suggest that the presence of adenosine 5’-diphosphate inhibits pyridine nucleotide reduction under both aerobic and anaerobic conditions and support the possibility that an energy-linked reaction may be involved. β€’ Keywords: Energy transfer, Eletcron transfer, Succinate, Pyridine nucleotide, ADP


Labels:


Organism: Guinea pig  Tissue;cell: Cardiac muscle"Cardiac muscle" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property., Liver, Kidney  Preparation: Isolated Mitochondria"Isolated Mitochondria" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property.  Enzyme: Complex II; Succinate Dehydrogenase"Complex II; Succinate Dehydrogenase" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property.  Regulation: Aerobic and Anaerobic Metabolism"Aerobic and Anaerobic Metabolism" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., ATP; ADP; AMP; PCr"ATP; ADP; AMP; PCr" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property.  Coupling state: OXPHOS 


Made history