Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Abid 2020 FASEB J

From Bioblast
Revision as of 17:55, 16 September 2020 by Plangger Mario (talk | contribs) (Created page with "{{Publication |title=Abid H, Ryan ZC, Delmotte P, Sieck GC, Lanza IR (2020) Extramyocellular interleukin-6 influences skeletal muscle mitochondrial physiology through canonica...")
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Publications in the MiPMap
Abid H, Ryan ZC, Delmotte P, Sieck GC, Lanza IR (2020) Extramyocellular interleukin-6 influences skeletal muscle mitochondrial physiology through canonical JAK/STAT signaling pathways. FASEB J [Epub ahead of print].

Β» PMID: 32885495 Open Access

Abid H, Ryan ZC, Delmotte P, Sieck GC, Lanza IR (2020) FASEB J

Abstract: Interleukin-6 (IL-6) is a pleiotropic cytokine that has been shown to be produced acutely by skeletal muscle in response to exercise, yet chronically elevated with obesity and aging. The mechanisms by which IL-6 influences skeletal muscle mitochondria acutely and chronically are unclear. To better understand the influence of extramyocellular IL-6 on skeletal muscle mitochondrial physiology, we treated differentiated myotubes with exogenous IL-6 to evaluate the dose- and duration-dependent effects of IL-6 on salient aspects of mitochondrial biology and the role of canonical IL-6 signaling in muscle cells. Acute exposure of myotubes to IL-6 increased the mitochondrial reactive oxygen species (mtROS) production and oxygen consumption rates (JO2 ) in a manner that was dependent on activation of the JAK/STAT pathway. Furthermore, STAT3 activation by IL-6 was partly attenuated by MitoQ, a mitochondrial-targeted antioxidant, suggesting that mtROS potentiates STAT3 signaling in skeletal muscle in response to IL-6 exposure. In concert with effects on mitochondrial physiology, acute IL-6 exposure induced several mitochondrial adaptations, consistent with the stress-induced mitochondrial hyperfusion. Exposure of myotubes to chronically elevated IL-6 further increased mtROS with eventual loss of respiratory capacity. These data provide new evidence supporting the interplay between cytokine signaling and mitochondrial physiology in skeletal muscle. β€’ Keywords: STAT3, Interleukin-6, Mitochondria, Reactive oxygen species, Skeletal muscle β€’ Bioblast editor: Plangger M


Labels: MiParea: Respiration 





HRR: Oxygraph-2k 

2020-09