Venkatachalam 2022 Cells

From Bioblast
Publications in the MiPMap
Venkatachalam K (2022) Regulation of aging and longevity by ion channels and transporters. Cells 11:1180.

Β» PMID: 35406743 Open Access

Venkatachalam K (2022) Cells

Abstract: Despite significant advances in our understanding of the mechanisms that underlie age-related physiological decline, our ability to translate these insights into actionable strategies to extend human healthspan has been limited. One of the major reasons for the existence of this barrier is that with a few important exceptions, many of the proteins that mediate aging have proven to be undruggable. The argument put forth here is that the amenability of ion channels and transporters to pharmacological manipulation could be leveraged to develop novel therapeutic strategies to combat aging. This review delves into the established roles for ion channels and transporters in the regulation of aging and longevity via their influence on membrane excitability, Ca2+ homeostasis, mitochondrial and endolysosomal function, and the transduction of sensory stimuli. The goal is to provide the reader with an understanding of emergent themes, and prompt further investigation into how the activities of ion channels and transporters sculpt the trajectories of cellular and organismal aging.

β€’ Bioblast editor: Gnaiger E


Venkatachalam 2022 Cells CORRECTION.png

Correction: FADH2 and Complex II

Ambiguity alert.png
FADH2 is shown as the substrate feeding electrons into Complex II (CII). This is wrong and requires correction - for details see Gnaiger (2024).
Gnaiger E (2024) Complex II ambiguities ― FADH2 in the electron transfer system. J Biol Chem 300:105470. - Β»Bioblast linkΒ«
Cookies help us deliver our services. By using our services, you agree to our use of cookies.