Scrima 2017 PLOS ONE
Scrima R, Menga M, Pacelli C, Agriesti F, Cela O, Piccoli C, Cotoia A, De Gregorio A, Gefter JV, Cinnella G, Capitanio N (2017) Para-hydroxyphenylpyruvate inhibits the pro-inflammatory stimulation of macrophage preventing LPS-mediated nitro-oxidative unbalance and immunometabolic shift. PLOS ONE 12:e0188683. |
Scrima R, Menga M, Pacelli C, Agriesti F, Cela O, Piccoli C, Cotoia A, De Gregorio A, Gefter JV, Cinnella G, Capitanio N (2017) PLOS ONE
Abstract: Targeting metabolism is emerging as a promising therapeutic strategy for modulation of the immune response in human diseases. In the presented study we used the lipopolysaccharide (LPS)-mediated activation of RAW 264.7 macrophage-like cell line as a model to investigate changes in the metabolic phenotype and to test the effect of p-hydroxyphenylpyruvate (pHPP) on it. pHPP is an intermediate of the PHE/TYR catabolic pathway, selected as analogue of the ethyl pyruvate (EP), which proved to exhibit antioxidant and anti-inflammatory activities. The results obtained show that LPS-priming of RAW 264.7 cell line to the activated M1 state resulted in up-regulation of the inducible nitric oxide synthase (iNOS) expression and consequently of NO production and in release of the pro-inflammatory cytokine IL-6. All these effects were prevented dose dependently by mM concentrations of pHPP more efficiently than EP. Respirometric and metabolic flux analysis of LPS-treated RAW 264.7 cells unveiled a marked metabolic shift consisting in downregulation of the mitochondrial oxidative phosphorylation and upregulation of aerobic glycolysis respectively. The observed respiratory failure in LPS-treated cells was accompanied with inhibition of the respiratory chain complexes I and IV and enhanced production of reactive oxygen species. Inhibition of the respiratory activity was also observed following incubation of human neonatal fibroblasts (NHDF-neo) with sera from septic patients. pHPP prevented all the observed metabolic alteration caused by LPS on RAW 264.7 or by septic sera on NHDF-neo. Moreover, we provide evidence that pHPP is an efficient reductant of cytochrome c. On the basis of the presented results a working model, linking pathogen-associated molecular patterns (PAMPs)-mediated immune response to mitochondrial oxidative metabolism, is put forward along with suggestions for its therapeutic control.
β’ Bioblast editor: Kandolf G β’ O2k-Network Lab: IT Foggia Capitanio N
Labels: MiParea: Respiration, Comparative MiP;environmental MiP
Organism: Human, Mouse
Tissue;cell: Endothelial;epithelial;mesothelial cell, Blood cells, Fibroblast, Macrophage-derived
Preparation: Intact cells
Coupling state: LEAK, ROUTINE, ET
Pathway: ROX
HRR: Oxygraph-2k
Labels, 2018-02