Schoepf 2019 MitoFit Preprint Arch

From Bioblast


MitoFit Preprints         MitoFit Preprints        
Gnaiger 2019 MitoFit Preprints
       
Gnaiger MitoFit Preprints 2020.4
        MitoFit DOI Data Center         MitoPedia: Preprints         Bioenergetics Communications


Schoepf 2019 MitoFit Preprint Arch

Publications in the MiPMap
Schรถpf B, Weissensteiner H, Schรคfer G, Fazzini F, Charoentong P, Naschberger A, Rupp B, Fendt L, Bukur V, Eichelbrรถnner I, Sorn P, Sahin U, Kronenberg F, Gnaiger E, Klocker H (2019) OXPHOS remodeling in high-grade prostate cancer involves mtDNA mutations and a prognostic gene expression signature. https://doi.org/10.26124/mitofit:190003 - 2020-03-20 published in ยปNature Communications 11:1487ยซ

ยป MitoFit Preprint Arch 2019.3.

MitoFit pdf

OXPHOS remodeling in high-grade prostate cancer involves mtDNA mutations and a prognostic gene expression signature


MitoFit Prep 2019.3. (2019) MitoFit Prep

Abstract: Version 1 (v1) 2019-06-11 doi:10.26124/mitofit:190003 - 2020-03-20 Published in ยปNature Communications 11:1487ยซ

Rewiring of energy metabolism and adaptation of mitochondrial respiratory functions are considered to impact on prostate cancer development and progression. High-resolution respirometry of paired benign and malignant human prostate tissue samples revealed reduced respiratory capacities with NADH-pathway substrates glutamate and malate in malignant tissue and a significant metabolic shift towards respiratory capacity with succinate, particularly in high-grade tumors. The load of potentially deleterious mitochondrial-DNA mutations was higher in tumor tissue and associated with unfavorable risk factors. High levels of potentially deleterious mutations in mitochondrial Complex I-encoding genes were associated with a 70% reduction in NADH-pathway capacity and compensation by increased S-pathway capacity. Structural analyses of these mutations revealed amino acid alterations leading to potentially deleterious effects on Complex I, supporting a causal relationship. RNA-seq revealed a signature of metabolic enzymes corresponding to the altered mitochondrial respiratory pathways and enabled extraction of a metagene set for prediction of shorter disease-free survival. โ€ข Keywords: Mitochondria, high-resolution respirometry, oxidative phosphorylation, mitochondrial DNA mutation, mtDNA heteroplasmy, metabolic reprograming โ€ข Bioblast editor: Gnaiger E

References

  1. DG Altman, B Lausen, W Sauerbrei, M Schumacher (1994). Dangers of using "optimal" cutpoints in the evaluation of prognostic factors. J.Natl.Cancer Inst., 86, 829-835
  2. S Anders, PT Pyl, W Huber (2015). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics., 31, 166-169.btu638 [pii];10.1093/bioinformatics/btu638 [doi]
  3. M Angelova, P Charoentong, H Hackl, ML Fischer, R Snajder, AM Krogsdam, MJ Waldner, G Bindea, B Mlecnik, J Galon, Z Trajanoski (2015). Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol., 16, 64.s13059-015-0620-6 [pii];10.1186/s13059-015-0620-6 [doi]
  4. RS Arnold, CQ Sun, JC Richards, G Grigoriev, IM Coleman, PS Nelson, CL Hsieh, JK Lee, Z Xu, A Rogatko, AO Osunkoya, M Zayzafoon, L Chung, JA Petros (2009). Mitochondrial DNA mutation stimulates prostate cancer growth in bone stromal environment. Prostate, 69, 1-11.10.1002/pros.20854 [doi]
  5. RK Bai , LJ Wong (2005). Simultaneous detection and quantification of mitochondrial DNA deletion(s), depletion, and over-replication in patients with mitochondrial disease. J.Mol.Diagn., 7, 613-622.S1525-1578(10)60595-8 [pii];10.1016/S1525-1578(10)60595-8 [doi]
  6. Y Bai, RM Shakeley, G Attardi (2000). Tight control of respiration by NADH dehydrogenase ND5 subunit gene expression in mouse mitochondria. Mol.Cell Biol., 20, 805-815
  7. R Baradaran, JM Berrisford, GS Minhas, LA Sazanov (2013). Crystal structure of the entire respiratory complex I. Nature, 494, 443-448.nature11871 [pii];10.1038/nature11871 [doi]
  8. MF Berger, MS Lawrence, F Demichelis, Y Drier, K Cibulskis, AY Sivachenko, A Sboner, R Esgueva, D Pflueger, C Sougnez, R Onofrio, SL Carter, K Park, L Habegger, L Ambrogio, T Fennell, M Parkin, G Saksena, D Voet, AH Ramos, TJ Pugh, J Wilkinson, S Fisher, W Winckler, S Mahan, K Ardlie, J Baldwin, JW Simons, N Kitabayashi, TY MacDonald, PW Kantoff, L Chin, SB Gabriel, MB Gerstein, TR Golub, M Meyerson, A Tewari, ES Lander, G Getz, MA Rubin, LA Garraway (2011). The genomic complexity of primary human prostate cancer. Nature, 470, 214-220.nature09744 [pii];10.1038/nature09744 [doi]
  9. K Breuer, AK Foroushani, MR Laird, C Chen, A Sribnaia, R Lo, GL Winsor, RE Hancock, FS Brinkman, DJ Lynn (2013). InnateDB: systems biology of innate immunity and beyond--recent updates and continuing curation. Nucleic Acids Res., 41, D1228-D1233.gks1147 [pii];10.1093/nar/gks1147 [doi]
  10. SE Calvo, KR Clauser, VK Mootha (2016). MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res., 44, D1251-D1257.gkv1003 [pii];10.1093/nar/gkv1003 [doi]
  11. S Castellana, C Fusilli, T Mazza (2016). A Broad Overview of Computational Methods for Predicting the Pathophysiological Effects of Non-synonymous Variants. Methods Mol.Biol., 1415, 423-440.10.1007/978-1-4939-3572-7_22 [doi]
  12. S Castellana, C Fusilli, G Mazzoccoli, T Biagini, D Capocefalo, M Carella, AL Vescovi, T Mazza (2017). High-confidence assessment of functional impact of human mitochondrial non-synonymous genome variations by APOGEE. PLoS.Comput.Biol., 13, e1005628.10.1371/journal.pcbi.1005628 [doi];PCOMPBIOL-D-16-01580 [pii]
  13. CC Cook, A Kim, S Terao, A Gotoh, M Higuchi (2012). Consumption of oxygen: a mitochondrial-generated progression signal of advanced cancer. Cell Death.Dis., 3, e258.cddis2011141 [pii];10.1038/cddis.2011.141 [doi]
  14. LC Costello , RB Franklin (2016). A comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer. Arch.Biochem.Biophys., 611, 100-112.S0003-9861(16)30136-9 [pii];10.1016/j.abb.2016.04.014 [doi]
  15. A Dobin, CA Davis, F Schlesinger, J Drenkow, C Zaleski, S Jha, P Batut, M Chaisson, TR Gingeras (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics., 29, 15-21.bts635 [pii];10.1093/bioinformatics/bts635 [doi]
  16. C Doerrier, Garcia-Souza LF, Krumschnabel G, Wohlfarter Y, Mรฉszรกros AT, Gnaiger E (2018) High-Resolution FluoRespirometry and OXPHOS protocols for human cells, permeabilized fibers from small biopsies of muscle, and isolated mitochondria. Methods Mol Biol 1782:31-70.
  17. A Dueregger, B Schopf, T Eder, J Hofer, E Gnaiger, A Aufinger, L Kenner, B Perktold, R Ramoner, H Klocker, IE Eder (2015). Differential Utilization of Dietary Fatty Acids in Benign and Malignant Cells of the Prostate. PLoS.One., 10, e0135704.10.1371/journal.pone.0135704 [doi];PONE-D-15-22093 [pii]
  18. P Emsley, B Lohkamp, WG Scott, K Cowtan (2010). Features and development of Coot. Acta Crystallogr.D.Biol.Crystallogr., 66, 486-501.S0907444910007493 [pii];10.1107/S0907444910007493 [doi]
  19. F Fazzini, B Schopf, M Blatzer, S Coassin, AA Hicks, F Kronenberg, L Fendt (2018). Plasmid-normalized quantification of relative mitochondrial DNA copy number. Sci.Rep., 8, 15347.10.1038/s41598-018-33684-5 [doi];10.1038/s41598-018-33684-5 [pii]
  20. R Feichtinger, G Schaefer, C Seifarth, JA Mayr, B Kofler, H Klocker (2018). Reduced levels of ATP synthase subunit ATP5F1A correlate with earlier-onset prostate cancer. Oxid Med Cell Longev, 1347174,
  21. G Gasparre, I Kurelac, M Capristo, L Iommarini, A Ghelli, C Ceccarelli, G Nicoletti, P Nanni, GC De, K Scotlandi, CM Betts, V Carelli, PL Lollini, G Romeo, M Rugolo, AM Porcelli (2011). A mutation threshold distinguishes the antitumorigenic effects of the mitochondrial gene MTND1, an oncojanus function. Cancer Res., 71, 6220-6229.0008-5472.CAN-11-1042 [pii];10.1158/0008-5472.CAN-11-1042 [doi]
  22. E Gnaiger (2009). Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int.J.Biochem.Cell Biol., 41, 1837-1845.S1357-2725(09)00117-4 [pii];10.1016/j.biocel.2009.03.013 [doi]
  23. E Gnaiger, Aasander Frostner E, Abdul Karim N, Abumrad NA, Acuna-Castroviejo D, Adiele RC, et al (2019) Mitochondrial respiratory states and rates. MitoFit Preprint Arch doi:10.26124/mitofit:190001.v4.
  24. TD Goddard, CC Huang, EC Meng, EF Pettersen, GS Couch, JH Morris, TE Ferrin (2018). UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci., 27, 14-25.10.1002/pro.3235 [doi]
  25. ZG Gulzar, JK McKenney, JD Brooks (2013). Increased expression of NuSAP in recurrent prostate cancer is mediated by E2F1. Oncogene, 32, 70-77.onc201227 [pii];10.1038/onc.2012.27 [doi]
  26. R Guo, S Zong, M Wu, J Gu, M Yang (2017). Architecture of Human Mitochondrial Respiratory Megacomplex I2III2IV2. Cell, 170, 1247-1257.S0092-8674(17)30887-5 [pii];10.1016/j.cell.2017.07.050 [doi]FE Harrell, Jr., KL Lee, DB Mark (1996). Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat.Med., 15, 361-387.10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 [pii];10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 [doi]
  27. JF Hopkins, VY Sabelnykova, J Weischenfeldt, R Simon, JA Aguiar, R Alkallas, LE Heisler, J Zhang, JD Watson, MLK Chua, M Fraser, F Favero, C Lawerenz, C Plass, G Sauter, JD McPherson, T Van Der Kwast, J Korbel, T Schlomm, RG Bristow, PC Boutros (2017). Mitochondrial mutations drive prostate cancer aggression. Nat.Commun., 8, 656.10.1038/s41467-017-00377-y [doi];10.1038/s41467-017-00377-y [pii]
  28. SS Hung, NJ Van Bergen, S Jackson, H Liang, DA Mackey, D Hernandez, SY Lim, AW Hewitt, I Trounce, A Pebay, RC Wong (2016). Study of mitochondrial respiratory defects on reprogramming to human induced pluripotent stem cells. Aging (Albany.NY), 8, 945-957.100950 [pii];10.18632/aging.100950 [doi]
  29. L Ippolito, A Marini, L Cavallini, A Morandi, L Pietrovito, G Pintus, E Giannoni, T Schrader, M Puhr, P Chiarugi, ML Taddei (2016). Metabolic shift toward oxidative phosphorylation in docetaxel resistant prostate cancer cells. Oncotarget., 7, 61890-61904.11301 [pii];10.18632/oncotarget.11301 [doi]
  30. AM James, YH Wei, CY Pang, MP Murphy (1996). Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochem.J., 318 ( Pt 2), 401-407
  31. YS Ju, LB Alexandrov, M Gerstung, I Martincorena, S Nik-Zainal, M Ramakrishna, HR Davies, E Papaemmanuil, G Gundem, A Shlien, N Bolli, S Behjati, PS Tarpey, J Nangalia, CE Massie, AP Butler, JW Teague, GS Vassiliou, AR Green, MQ Du, A Unnikrishnan, JE Pimanda, BT Teh, N Munshi, M Greaves, P Vyas, AK El-Naggar, T Santarius, VP Collins, R Grundy, JA Taylor, DN Hayes, D Malkin, CS Foster, AY Warren, HC Whitaker, D Brewer, R Eeles, C Cooper, D Neal, T Visakorpi, WB Isaacs, GS Bova, AM Flanagan, PA Futreal, AG Lynch, PF Chinnery, U McDermott, MR Stratton, PJ Campbell (2014). Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. Elife., 3.10.7554/eLife.02935 [doi]AMF Kalsbeek, EKF Chan, NM Corcoran, CM Hovens, VM Hayes (2017). Mitochondrial genome variation and prostate cancer: a review of the mutational landscape and application to clinical management. Oncotarget., 8, 71342-71357.10.18632/oncotarget.19926 [doi];19926 [pii]
  32. AMF Kalsbeek, EKF Chan, J Grogan, DC Petersen, W Jaratlerdsiri, R Gupta, RJ Lyons, AM Haynes, LG Horvath, JG Kench, PD Stricker, VM Hayes (2018). Altered mitochondrial genome content signals worse pathology and prognosis in prostate cancer. Prostate, 78, 25-31.10.1002/pros.23440 [doi]
  33. DM Kirby, A Boneh, CW Chow, A Ohtake, MT Ryan, D Thyagarajan, DR Thorburn (2003). Low mutant load of mitochondrial DNA G13513A mutation can cause Leigh's disease. Ann.Neurol., 54, 473-478.10.1002/ana.10687 [doi]
  34. A Kloss-Brandstatter, G Schafer, G Erhart, A Huttenhofer, S Coassin, C Seifarth, M Summerer, J Bektic, H Klocker, F Kronenberg (2010). Somatic mutations throughout the entire mitochondrial genome are associated with elevated PSA levels in prostate cancer patients. Am.J.Hum.Genet., 87, 802-812.S0002-9297(10)00588-4 [pii];10.1016/j.ajhg.2010.11.001 [doi]
  35. A Kloss-Brandstatter, H Weissensteiner, G Erhart, G Schafer, L Forer, S Schonherr, D Pacher, C Seifarth, A Stockl, L Fendt, I Sottsas, H Klocker, CW Huck, M Rasse, F Kronenberg, FR Kloss (2015). Validation of Next-Generation Sequencing of Entire Mitochondrial Genomes and the Diversity of Mitochondrial DNA Mutations in Oral Squamous Cell Carcinoma. PLoS.One., 10, e0135643.10.1371/journal.pone.0135643 [doi];PONE-D-15-21472 [pii]
  36. K Kluckova, A Bezawork-Geleta, J Rohlena, L Dong, J Neuzil (2013). Mitochondrial complex II, a novel target for anti-cancer agents. Biochim.Biophys.Acta, 1827, 552-564.S0005-2728(12)01072-9 [pii];10.1016/j.bbabio.2012.10.015 [doi]
  37. H Li, B Handsaker, A Wysoker, T Fennell, J Ruan, N Homer, G Marth, G Abecasis, R Durbin (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics., 25, 2078-2079.btp352 [pii];10.1093/bioinformatics/btp352 [doi]
  38. J Lindberg, IG Mills, D Klevebring, W Liu, M Neiman, J Xu, P Wikstrom, P Wiklund, F Wiklund, L Egevad, H Gronberg (2013). The mitochondrial and autosomal mutation landscapes of prostate cancer. Eur.Urol., 63, 702-708.S0302-2838(12)01438-8 [pii];10.1016/j.eururo.2012.11.053 [doi]
  39. MI Love, W Huber, S Anders (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550.s13059-014-0550-8 [pii];10.1186/s13059-014-0550-8 [doi]
  40. M Malvezzi, P Bertuccio, T Rosso, M Rota, F Levi, VC La, E Negri (2015). European cancer mortality predictions for the year 2015: does lung cancer have the highest death rate in EU women? Ann.Oncol., 26, 779-786.mdv001 [pii];10.1093/annonc/mdv001 [doi]
  41. JA Mayr, D Meierhofer, F Zimmermann, R Feichtinger, C Kogler, M Ratschek, N Schmeller, W Sperl, B Kofler (2008). Loss of complex I due to mitochondrial DNA mutations in renal oncocytoma. Clin.Cancer Res., 14, 2270-2275.14/8/2270 [pii];10.1158/1078-0432.CCR-07-4131 [doi]
  42. JP Mazat, T Letellier, F Bedes, M Malgat, B Korzeniewski, LS Jouaville, R Morkuniene (1997). Metabolic control analysis and threshold effect in oxidative phosphorylation: implications for mitochondrial pathologies. Mol.Cell Biochem., 174, 143-148
  43. JP Mazat, R Rossignol, M Malgat, C Rocher, B Faustin, T Letellier (2001). What do mitochondrial diseases teach us about normal mitochondrial functions.that we already knew: threshold expression of mitochondrial defects. Biochim.Biophys.Acta, 1504, 20-30.S0005-2728(00)00236-X [pii]
  44. R McFarland, DM Kirby, KJ Fowler, A Ohtake, MT Ryan, DJ Amor, JM Fletcher, JW Dixon, FA Collins, DM Turnbull, RW Taylor, DR Thorburn (2004). De novo mutations in the mitochondrial ND3 gene as a cause of infantile mitochondrial encephalopathy and complex I deficiency. Ann.Neurol., 55, 58-64.10.1002/ana.10787 [doi]
  45. A Moore, Q Lan, JN Hofmann, CS Liu, WL Cheng, TT Lin, SI Berndt (2017). A prospective study of mitochondrial DNA copy number and the risk of prostate cancer. Cancer Causes Control, 28, 529-538.10.1007/s10552-017-0879-x [doi];10.1007/s10552-017-0879-x [pii]
  46. M Mort, US Evani, VG Krishnan, KK Kamati, PH Baenziger, A Bagchi, BJ Peters, R Sathyesh, B Li, Y Sun, B Xue, NH Shah, MG Kann, DN Cooper, P Radivojac, SD Mooney (2010). In silico functional profiling of human disease-associated and polymorphic amino acid substitutions. Hum.Mutat., 31, 335-346.10.1002/humu.21192 [doi]
  47. MM Mortensen, S Hoyer, AS Lynnerup, TF Orntoft, KD Sorensen, M Borre, L Dyrskjot (2015). Expression profiling of prostate cancer tissue delineates genes associated with recurrence after prostatectomy. Sci.Rep., 5, 16018.srep16018 [pii];10.1038/srep16018 [doi]
  48. JR Packer , NJ Maitland (2016). The molecular and cellular origin of human prostate cancer. Biochim.Biophys.Acta, 1863, 1238-1260.S0167-4889(16)30041-6 [pii];10.1016/j.bbamcr.2016.02.016 [doi]
  49. S Paglialunga, BB van, M Bosma, MP Valdecantos, E Amengual-Cladera, JA Jorgensen, BD van, GJM den Hartog, DM Ouwens, JJ Briede, P Schrauwen, J Hoeks (2012). Targeting of mitochondrial reactive oxygen species production does not avert lipid-induced insulin resistance in muscle tissue from mice. Diabetologia, 55, 2759-2768.10.1007/s00125-012-2626-x [doi];10.1007/s00125-012-2626-x [pii]
  50. JS Park, LK Sharma, H Li, R Xiang, D Holstein, J Wu, J Lechleiter, SL Naylor, JJ Deng, J Lu, Y Bai (2009). A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum.Mol.Genet., 18, 1578-1589.ddp069 [pii];10.1093/hmg/ddp069 [doi]
  51. NN Pavlova , CB Thompson (2016). The Emerging Hallmarks of Cancer Metabolism. Cell Metab, 23, 27-47.S1550-4131(15)00621-X [pii];10.1016/j.cmet.2015.12.006 [doi]
  52. L Pereira, P Soares, P Radivojac, B Li, DC Samuels (2011). Comparing phylogeny and the predicted pathogenicity of protein variations reveals equal purifying selection across the global human mtDNA diversity. Am.J.Hum.Genet., 88, 433-439.S0002-9297(11)00098-X [pii];10.1016/j.ajhg.2011.03.006 [doi]
  53. JA Petros, AK Baumann, E Ruiz-Pesini, MB Amin, CQ Sun, J Hall, S Lim, MM Issa, WD Flanders, SH Hosseini, FF Marshall, DC Wallace (2005). mtDNA mutations increase tumorigenicity in prostate cancer. Proc.Natl.Acad.Sci.U.S.A, 102, 719-724.0408894102 [pii];10.1073/pnas.0408894102 [doi]
  54. M Picard, J Zhang, S Hancock, O Derbeneva, R Golhar, P Golik, S O'Hearn, S Levy, P Potluri, M Lvova, A Davila, CS Lin, JC Perin, EF Rappaport, H Hakonarson, IA Trounce, V Procaccio, DC Wallace (2014). Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. Proc.Natl.Acad.Sci.U.S.A, 111, E4033-E4042.1414028111 [pii];10.1073/pnas.1414028111 [doi]
  55. CL Quinlan, JR Treberg, IV Perevoshchikova, AL Orr, MD Brand (2012). Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters. Free Radic.Biol.Med., 53, 1807-1817.S0891-5849(12)00504-7 [pii];10.1016/j.freeradbiomed.2012.08.015 [doi]
  56. E Raush, M Totrov, BD Marsden, R Abagyan (2009). A new method for publishing three-dimensional content. PLoS.One., 4, e7394.10.1371/journal.pone.0007394 [doi]
  57. H Ross-Adams, AD Lamb, MJ Dunning, S Halim, J Lindberg, CM Massie, LA Egevad, R Russell, A Ramos-Montoya, SL Vowler, NL Sharma, J Kay, H Whitaker, J Clark, R Hurst, VJ Gnanapragasam, NC Shah, AY Warren, CS Cooper, AG Lynch, R Stark, IG Mills, H Gronberg, DE Neal (2015). Integration of copy number and transcriptomics provides risk stratification in prostate cancer: A discovery and validation cohort study. EBioMedicine., 2, 1133-1144.10.1016/j.ebiom.2015.07.017 [doi];S2352-3964(15)30071-2 [pii]
  58. R Rossignol, B Faustin, C Rocher, M Malgat, JP Mazat, T Letellier (2003). Mitochondrial threshold effects. Biochem.J., 370, 751-762.10.1042/BJ20021594 [doi];BJ20021594 [pii]
  59. A Sboner, F Demichelis, S Calza, Y Pawitan, SR Setlur, Y Hoshida, S Perner, HO Adami, K Fall, LA Mucci, PW Kantoff, M Stampfer, SO Andersson, E Varenhorst, JE Johansson, MB Gerstein, TR Golub, MA Rubin, O Andren (2010). Molecular sampling of prostate cancer: a dilemma for predicting disease progression. BMC.Med.Genomics, 3, 8.1755-8794-3-8 [pii];10.1186/1755-8794-3-8 [doi]
  60. G Schaefer, JM Mosquera, R Ramoner, K Park, A Romanel, E Steiner, W Horninger, J Bektic, M Ladurner-Rennau, MA Rubin, F Demichelis, H Klocker (2013). Distinct ERG rearrangement prevalence in prostate cancer: higher frequency in young age and in low PSA prostate cancer. Prostate Cancer Prostatic.Dis., 16, 132-138.pcan20134 [pii];10.1038/pcan.2013.4 [doi]
  61. B Schopf, G Schafer, A Weber, H Talasz, IE Eder, H Klocker, E Gnaiger (2016). Oxidative phosphorylation and mitochondrial function differ between human prostate tissue and cultured cells. FEBS J., 283, 2181-2196.10.1111/febs.13733 [doi]
  62. W Sperl, D Skladal, E Gnaiger, M Wyss, U Mayr, J Hager, FN Gellerich (1997). High resolution respirometry of permeabilized skeletal muscle fibers in the diagnosis of neuromuscular disorders. Mol.Cell Biochem., 174, 71-78
  63. S Stadlmann, G Rieger, A Amberger, AV Kuznetsov, R Margreiter, E Gnaiger (2002). H2O2-mediated oxidative stress versus cold ischemia-reperfusion: mitochondrial respiratory defects in cultured human endothelial cells. Transplantation, 74, 1800-1803.10.1097/01.TP.0000039262.25355.67 [doi]
  64. UH Stenman, PA Abrahamsson, G Aus, H Lilja, C Bangma, FC Hamdy, L Boccon-Gibod, P Ekman (2005). Prognostic value of serum markers for prostate cancer. Scand.J.Urol.Nephrol.Suppl, 64-81. W2451251K65672K1 [pii];10.1080/03008880510030941 [doi]
  65. A Sturn, J Quackenbush, Z Trajanoski (2002). Genesis: cluster analysis of microarray data. Bioinformatics., 18, 207-208
  66. L Tretter, A Patocs, C Chinopoulos (2016). Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim.Biophys.Acta, 1857, 1086-1101.S0005-2728(16)30059-7 [pii];10.1016/j.bbabio.2016.03.012 [doi]
  67. L Valcarcel-Jimenez, E Gaude, V Torrano, C Frezza, A Carracedo (2017). Mitochondrial Metabolism: Yin and Yang for Tumor Progression. Trends Endocrinol.Metab, 28, 748-757.S1043-2760(17)30087-5 [pii];10.1016/j.tem.2017.06.004 [doi]
  68. L Valente, D Piga, E Lamantea, F Carrara, G Uziel, P Cudia, A Zani, L Farina, L Morandi, M Mora, A Spinazzola, M Zeviani, V Tiranti (2009). Identification of novel mutations in five patients with mitochondrial encephalomyopathy. Biochim.Biophys.Acta, 1787, 491-501.S0005-2728(08)00691-9 [pii];10.1016/j.bbabio.2008.10.001 [doi]
  69. T Wai, D Teoli, EA Shoubridge (2008). The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat.Genet., 40, 1484-1488.ng.258 [pii];10.1038/ng.258 [doi]
  70. A Weber, H Klocker, H Oberacher, E Gnaiger, H Neuwirt, N Sampson, IE Eder (2018). Succinate Accumulation Is Associated with a Shift of Mitochondrial Respiratory Control and HIF-1alpha Upregulation in PTEN Negative Prostate Cancer Cells. Int.J.Mol.Sci., 19.ijms19072129 [pii];10.3390/ijms19072129 [doi]
  71. H Weissensteiner, L Forer, C Fuchsberger, B Schopf, A Kloss-Brandstatter, G Specht, F Kronenberg, S Schonherr (2016). mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud. Nucleic Acids Res., 44, W64-W69.gkw247 [pii];10.1093/nar/gkw247 [doi]
  72. H Weissensteiner, D Pacher, A Kloss-Brandstatter, L Forer, G Specht, HJ Bandelt, F Kronenberg, A Salas, S Schonherr (2016). HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res., 44, W58-W63.gkw233 [pii];10.1093/nar/gkw233 [doi]
  73. LJ Wong, MH Liang, H Kwon, RK Bai, O Alper, A Gropman (2002). A cystic fibrosis patient with two novel mutations in mitochondrial DNA: mild disease led to delayed diagnosis of both disorders. Am.J.Med Genet., 113, 59-64.10.1002/ajmg.10767 [doi]

Preprints for Gentle Science

MitoFit Preprints.png

ยป MitoFit Preprints - the Open Access preprint server for mitochondrial physiology and bioenergetics

ยป MitoPedia: Preprints

Cookies help us deliver our services. By using our services, you agree to our use of cookies.