Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Komary 2010 Biochim Biophys Acta

From Bioblast
Publications in the MiPMap
Komary Z, Tretter L, Adam-Vizi V (2010) Membrane potential-related effect of calcium on reactive oxygen species generation in isolated brain mitochondria. Biochim Biophys Acta 1797:922-8.

Β» PMID: 20230776 Open Access

Komary Z, Tretter L, Adam-Vizi V (2010) Biochim Biophys Acta

Abstract: The effect of Ca2+ applied in high concentrations (50 and 300 microM) was addressed on the generation of reactive oxygen species in isolated mitochondria from guinea-pig brain. The experiments were performed in the presence of ADP, a very effective inhibitor of mitochondrial permeability transition. Moderate increase in H2O2 release from mitochondria was induced by Ca2+ applied in 50 microM, but not in 300 microM concentration as measured with Amplex red fluorescent assay starting with a delay of 100-150 sec after exposure to Ca2+. Parallel measurements of membrane potential (DeltaPsim) by safranine fluorescence showed a transient depolarization by Ca2+ followed by the recovery of DeltaPsim to a value, which was more negative than that observed before addition of Ca2+ indicating a relative hyperpolarization. NAD(P)H fluorescence was also increased by Ca2+ given in 50 microM concentration. In mitochondria having high DeltaPsim in the presence of oligomycin or ATP, the basal rate of release of H2O2 was significantly higher than that observed in a medium containing ADP and Ca2+ no longer increased but rather decreased the rate of H2O2 release. With 300 microM Ca2+ only a loss but no tendency of a recovery of DeltaPsim was detected and H2O2 release was unchanged. It is suggested that in the presence of nucleotides the effect of Ca2+ on mitochondrial ROS release is related to changes in DeltaPsim; in depolarized mitochondria, in the presence of ADP, moderate increase in H2O2 release is induced by calcium, but only in <or=100 microM concentration, when after a transient Ca2+-induced depolarization mitochondria became more polarized. In highly polarized mitochondria, in the presence of ATP or oligomycin, where no hyperpolarization follows the Ca2+-induced depolarization, Ca2+ fails to stimulate mitochondrial ROS generation. These effects of calcium (<or=300 microM) are unrelated to mitochondrial permeability transition. β€’ Keywords: Mitochondria, Brain, Oxidative stress, Calcium, Membrane potential, Reactive oxygen species, Amplex Red, Safranin

β€’ O2k-Network Lab: HU Budapest Tretter L

Labels: MiParea: Instruments;methods 

Organism: Guinea pig  Tissue;cell: Nervous system  Preparation: Isolated mitochondria 

HRR: Oxygraph-2k 

MitoFit 2022 NADH