Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

De Dieuleveult 2020 bioRxiv

From Bioblast
Publications in the MiPMap
de Dieuleveult M, Leduc M, Salataj E, Ransy C, Dairou J, Homma K, Le Gall M, Bossard P, Lombès A, Bouillaud F, Ferry L, Defossez PA, Cadoret JC, Ichijo H, Wood SA, Guillonneau F, Dressel R, Miotto B (2020) USP9X deubiquitinase couples the pluripotency network and cell metabolism to regulate ESC differentiation potential. bioRxiv doi: https://doi.org/10.1101/2020.01.13.904904.

» bioRxiv Open Access

de Dieuleveult M, Leduc M, Salataj E, Ransy C, Dairou J, Homma K, Le Gall M, Bossard P, Lombes A, Bouillaud F, Ferry L, Defossez PA, Cadoret JC, Ichijo H, Wood SA, Guillonneau F, Dressel R, Miotto B (2020) bioRxiv

Abstract: Embryonic stem cells (ESC) have the unique ability to differentiate into all three germ cell layers. ESC transition through different states of pluripotency in response to growth factor signals and environmental cues before becoming terminally differentiated. Here, we demonstrated, by a multi-omic strategy, that the deubiquitinase USP9X regulates the developmental potential of ESC, and their transition from a naive to a more developmentally advance, or primed, state of pluripotency. We show that USP9X facilitates developmental gene expression and induces modifications of the mitochondrial bioenergetics, including decreased routing of pyruvate towards its oxidation and reduced respiration. In addition, USP9X binds to the pluripotency factor ESRRB, regulates its abundance and the transcriptional levels of a subset of its target genes. Finally, under permissive culture conditions, depletion of Usp9X accelerates cell differentiation in all cell lineages. We thus identified a new regulator of naive pluripotency and show that USP9X couples ESRRB pluripotency transcriptional network and cellular metabolism, both of which are important for ESC fate and pluripotency. Keywords: USP9X, Pluripotency, ESRRB, Glycolysis, Cell Fate Bioblast editor: Plangger M O2k-Network Lab: FR Paris Bouillaud F


Labels: MiParea: Respiration, nDNA;cell genetics, Developmental biology 


Organism: Mouse  Tissue;cell: Stem cells 



HRR: Oxygraph-2k 

Labels, 2020-03