Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Cardoso 2022 MitoFit rTCA

From Bioblast


MitoFit Preprints         MitoFit Preprints        
Gnaiger 2019 MitoFit Preprints
       
Gnaiger MitoFit Preprints 2020.4
        MitoFit DOI Data Center         MitoPedia: Preprints         Bioenergetics Communications


Cardoso 2022 MitoFit rTCA

Publications in the MiPMap
Cardoso LHD, Gnaiger E (2022) Reverse citric acid cycle and mitochondrial succinate formation under anoxia: from parasites and invertebrates to ischemia-reperfusion. (in prep)



Abstract: The catabolic pathway through the individual steps of the citric acid cycle (Krebs cycle, tricarboxylic acid TCA cycle) has been characterized by the kinetic and regulatory properties of the enzymes involved and is substantiated by the Gibbs energy (exergy) and enthalpy changes (Burton, Krebs 1953; Krebs et al 1957). Following the latter approach, it was possible to prove on thermodynamic and stoichiometric grounds that (1) the simple stoichiometries of fermentation products per glucose – whole numbers such as 2 lactate per glucose – do not hold for succinate, and (2) the textbook ATP yields per glucose (Hochachka, Somero 1984, 2002) are not only inaccurate but are simply impossible according to the 2nd Law of thermodynamics (Gnaiger 1977, 1983, 1993).

In view of a renaissance of the interest in the reverse or reductive TCA cycle (rTCA; Smith, Morowitz 2004) and the role of succinate in ischemia-reperfusion (Chouchani et al 2014), reflections are warranted on the fundamental biochemistry and thermodynamics of this anaerobic pathway. Proper analysis of the rTCA pathway to succinate requires a paradigm shift (1) from linear and branched pathways (Hochachka, Somero 1984) to anticyclic processes (Gnaiger 1977), (2) from serial NAD+/NADH redox balance in glycolysis with formation of lactate to parallel redox balance in the forward and reverse direction of the TCA cycle, (3) from simple whole-number (2 lactate/glucose) to fractional stoichiometries of fermentation product formed per glucose utilized (1.7 succinate/glucose), and (4) in turn from a simple ATP/glucose yield to fractional stoichiometries of ATP yield (Gnaiger 1993). Importantly, even trace amounts of dissolved oxygen in the mitochondrial microenvironment of the living cell and simultaneous utilization of several fermentable substrates ― including aspartate and glutamate (Hochachka, Somero 1984) ― exert profound implications on the redox balance (Harrison et al 2015) and ATP yield (Gnaiger 1991).

Bioblast editor: Gnaiger E

Literature

LinkReferenceViewYear
Andrienko TN, Pasdois P, Pereira GC, Ovens MJ, Halestrap AP (2017) The role of succinate and ROS in reperfusion injury - a critical appraisal. J Mol Cell Cardiol 110:1-14. doi: 10.1016/j.yjmcc.2017.06.016PMID: 28689004 Open Access2017
Bundgaard A, James AM, Gruszczyk AV, Martin J, Murphy MP, Fago A (2019) Metabolic adaptations during extreme anoxia in the turtle heart and their implications for ischemia-reperfusion injury. Sci Rep 9:2850.PMID: 30808950 Open Access2019
Burton K, Krebs HA (1953) The free-energy changes associated with the individual steps of the tricarboxylic acid cycle, glycolysis and alcoholic fermentation and with the hydrolysis of the pyrophosphate groups of adenosinetriphosphate. Biochem J 54:94-107. doi: 10.1042/bj0540094PMID: 13058838 Open Access1953
Bénit P, Letouzé E, Rak M, Aubry L, Burnichon N, Favier J, Gimenez-Roqueplo AP, Rustin P (2014) Unsuspected task for an old team: succinate, fumarate and other Krebs cycle acids in metabolic remodeling. Biochim Biophys Acta 1837:1330-7. doi: 10.1016/j.bbabio.2014.03.013PMID: 24699309 Open Access2014
Chinopoulos C (2013) Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase Complex. J Neurosci Res 91:1030-43.PMID: 23378250 Open Access2013
Chinopoulos C (2019) Succinate in ischemia: Where does it come from? Int J Biochem Cell Biol 115:105580. https://doi.org/10.1016/j.biocel.2019.105580PMID: 313941742019
Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ, Smith AC, Eyassu F, Shirley R, Hu CH, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa ASH, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, Murphy MP (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515:431-5. doi: 10.1038/nature13909PMID: 25383517 Open Access2014
Dahl HA, Johansen A, Nilsson GE, Lefevre S (2021) The metabolomic response of crucian carp (Carassius carassius) to anoxia and reoxygenation differs between tissues and hints at uncharacterized survival strategies. Metabolites 11:435. doi: 10.3390/metabo11070435PMID: 34357329 Open Access2021
Dalla-Betta P, Schulte M (2009) Calculation of the aqueous thermodynamic properties of citric acid cycle intermediates and precursors and the estimation of high temperature and pressure equation of state parameters. Int J Mol Sci 10:2809-37. doi: 10.3390/ijms10062809. PMID: 19582231.PMID: 19582231 Open Access2009
Gnaiger E (1977) Thermodynamic considerations of invertebrate anoxibiosis. In: Applications of calorimetry in life sciences. Lamprecht I, Schaarschmidt B (eds), de Gruyter, Berlin:281-303.Bioblast pdf1977
Gnaiger E (1980) Das kalorische Äquivalent des ATP-Umsatzes im aeroben und anoxischen Metabolismus. Thermochim Acta 40:195-223. https://doi.org/10.1016/0040-6031(80)87186-3sciencedirect Bioblast pdf1980
Gnaiger E (1983) Heat dissipation and energetic efficiency in animal anoxibiosis. Economy contra power. J Exp Zool 228:471-90.Bioblast pdf1983
Gnaiger E (1991) Animal energetics at very low oxygen: Information from calorimetry and respirometry. In: Strategies for gas exchange and metabolism. Woakes R, Grieshaber M, Bridges CR (eds), Soc Exp Biol Seminar Series 44, Cambridge Univ Press, London:149-71.Bioblast pdf1991
Gnaiger E (1993) Efficiency and power strategies under hypoxia. Is low efficiency at high glycolytic ATP production a paradox? In: Surviving hypoxia: Mechanisms of control and adaptation. Hochachka PW, Lutz PL, Sick T, Rosenthal M, Van den Thillart G (eds) CRC Press, Boca Raton, Ann Arbor, London, Tokyo:77-109.Bioblast pdf1993
Gnaiger E, Méndez G, Hand SC (2000) High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia. Proc Natl Acad Sci U S A 97:11080-5. https://doi.org/10.1073/pnas.97.20.11080PMID: 11005877 Open Access2000
Harrison DK, Fasching M, Fontana-Ayoub M, Gnaiger E (2015) Cytochrome redox states and respiratory control in mouse and beef heart mitochondria at steady-state levels of hypoxia. J Appl Physiol 119:1210-8. https://doi.org/10.1152/japplphysiol.00146.2015PMID: 26251509 Open Access2015
Hochachka PW, Dressendorfer RH (1976) Succinate accumulation in man during exercise. Eur J Appl Physiol Occup Physiol 35:235-42. doi: 10.1007/BF00423282PMID: 9762511976
Hochachka PW, Somero GN (1984) Biochemical adaptation. Princeton Univ Press, New Jersey: 537 pp.1984
Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford Univ Press, New York: 466 pp.2002
Hochachka PW, Storey KB (1975) Metabolic consequences of diving in animals and man. Science 187:613-21. doi: 10.1126/science.163485PMID: 1634851975
Holland KT, Knapp JS, Shouesmith JG (1987) Anaerobic bacteria. Blackie, Glasgow and London 206 pp.Link1987
Jinich A, Sanchez-Lengeling B, Ren H, Goldford JE, Noor E, Sanders JN, Segrè D, Aspuru-Guzik A (2020) A thermodynamic atlas of carbon redox chemical space. Proc Natl Acad Sci U S A 117:32910-18. doi: 10.1073/pnas.2005642117PMID: 33376214 Open Access2020
Kiss G, Konrad C, Doczi J, Starkov AA, Kawamata H, Manfredi G, Zhang SF, Gibson GE, Beal MF, Adam-Vizi V, Chinopoulos C (2013) The negative impact of alpha-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation. FASEB J 27:2392-406.PMID: 23475850 Open Access2013
Kiss G, Konrad C, Pour-Ghaz I, Mansour JJ, Németh B, Starkov AA, Adam-Vizi V, Chinopoulos C (2014) Diaphorases provide NAD+ in anoxia. FASEB J 28:1682-97.PMID: 24391134 Open Access2014
Kita K, Hirawake H, Miyadera H, Amino H, Takeo S (2002) Role of complex II in anaerobic respiration of the parasite mitochondria from Ascaris suum and Plasmodium falciparum. Biochim Biophys Acta 1553:123–39.PMID: 11803022 Open Access2002
Koendjbiharie JG, van Kranenburg R, Kengen SWM (2021) The PEP-pyruvate-oxaloacetate node: variation at the heart of metabolism. FEMS Microbiol Rev 45:fuaa061. doi: 10.1093/femsre/fuaa061PMID: 33289792 Open Access2021
Krebs HA, Kornberg HL, Burton K (1957) A survey of the energy transformations in living matter. Ergeb Physiol 49:212-98.PMID: 136095731957
Kua J, Hernandez AL, Velasquez DN (2021) Thermodynamics of potential CHO metabolites in a reducing environment. Life (Basel) 11:1025. doi: 10.3390/life11101025PMID: 34685396 Open Access2021
Muchowska KB, Varma SJ, Chevallot-Beroux E, Lethuillier-Karl L, Li G, Moran J (2017) Metals promote sequences of the reverse Krebs cycle. Nat Ecol Evol 1:1716-21. doi: 10.1038/s41559-017-0311-7PMID: 28970480 Open Access2017
Murphy MP, O'Neill LAJ (2018) Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. Cell 174:780-4. doi: 10.1016/j.cell.2018.07.030PMID: 30096309 Open Access2018
Roosterman D, Cottrell GS (2021) Rethinking the citric acid cycle: connecting pyruvate carboxylase and citrate synthase to the flow of energy and material. Int J Mol Sci 22:604. doi:10.3390/ijms22020604PMID: 33435350 Open Access2021
Smith E, Morowitz HJ (2004) Universality in intermediary metabolism. Proc Natl Acad Sci U S A 101:13168-73. https://doi.org/10.1073/pnas.0404922101PMID: 15340153 Open Access2004
Spinelli JB, Rosen PC, Sprenger HG, Puszynska AM, Mann JL, Roessler JM, Cangelosi AL, Henne A, Condon KJ, Zhang T, Kunchok T, Lewis CA, Chandel NS, Sabatini DM (2021) Fumarate is a terminal electron acceptor in the mammalian electron transport chain. Science 374:1227-37. https://doi.org/10.1126/science.abi7495PMID: 348555042021
Sridharan V, Guichard J, Li CY, Muise-Helmericks R, Beeson CC, Wright GL (2008) O2-sensing signal cascade: clamping of O2 respiration, reduced ATP utilization, and inducible fumarate respiration. Am J Physiol Cell Physiol 295:C29-37. doi: 10.1152/ajpcell.00466.2007PMID: 18463229 Open Access2008
Wilson MA, Cascarano J (1970) The energy-yielding oxidation of NADH by fumarate in submitochondrial particles of rat tissues. Biochim Biophys Acta 216:54-62. doi: 10.1016/0005-2728(70)90158-1PMID: 43222951970
Zhang J, Wang YT, Miller JH, Day MM, Munger JC, Brookes PS (2018) Accumulation of succinate in cardiac ischemia primarily occurs via canonical Krebs cycle activity. Cell Rep 23:2617-28. doi: 10.1016/j.celrep.2018.04.104PMID: 29847793 Open Access2018
von Brand T (1946) Anaerobiosis in invertebrates. Biodynamica Monographs 4:328 pp.Open Access1946
von Brand T (1966) Biochemistry of parasites. Academic Press:429 pp.1966