Broatch 2017 Am J Physiol Regul Integr Comp Physiol
Broatch JR, Petersen A, Bishop DJ (2017) Cold-water immersion following sprint interval training does not alter endurance signaling pathways or training adaptations in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 313:R372-84. |
Broatch JR, Petersen A, Bishop DJ (2017) Am J Physiol Regul Integr Comp Physiol
Abstract: We investigated the underlying molecular mechanisms by which postexercise cold-water immersion (CWI) may alter key markers of mitochondrial biogenesis following both a single session and 6 wk of sprint interval training (SIT). Nineteen men performed a single SIT session, followed by one of two 15-min recovery conditions: cold-water immersion (10Β°C) or a passive room temperature control (23Β°C). Sixteen of these participants also completed 6 wk of SIT, each session followed immediately by their designated recovery condition. Four muscle biopsies were obtained in total, three during the single SIT session (preexercise, postrecovery, and 3 h postrecovery) and one 48 h after the last SIT session. After a single SIT session, phosphorylated (p-)AMPK, p-p38 MAPK, p-p53, and peroxisome proliferator-activated receptor-Ξ³ coactivator-1Ξ± (PGC-1Ξ±) mRNA were all increased (P < 0.05). Postexercise CWI had no effect on these responses. Consistent with the lack of a response after a single session, regular postexercise CWI had no effect on PGC-1Ξ± or p53 protein content. Six weeks of SIT increased peak aerobic power, VO2peak, maximal oxygen consumption, maximal uncoupled respiration (complexes I and II), and 2-km time trial performance (P < 0.05). However, regular CWI had no effect on changes in these markers, consistent with the lack of response in the markers of mitochondrial biogenesis. Although these observations suggest that CWI is not detrimental to endurance adaptations following 6 wk of SIT, they question whether postexercise CWI is an effective strategy to promote mitochondrial biogenesis and improvements in endurance performance.
Copyright Β© 2017 the American Physiological Society. β’ Keywords: Citrate synthase, Cold-shock proteins, Cryotherapy, Exercise recovery, Tumor suppressor p53 β’ Bioblast editor: Kandolf G
Labels: MiParea: Respiration, mt-Biogenesis;mt-density, Exercise physiology;nutrition;life style
Organism: Human
Tissue;cell: Skeletal muscle
Preparation: Permeabilized tissue
Coupling state: LEAK, OXPHOS, ET
Pathway: N, NS, ROX
HRR: Oxygraph-2k
Labels, 2017-11