Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Benoist 2019 Sci Rep

From Bioblast
Publications in the MiPMap
Benoist L, Chadet S, Genet T, Lefort C, Heraud A, Danila MD, Muntean DM, Baron C, Angoulvant D, Babuty D, Bourguignon T, Ivanes F (2019) Stimulation of P2Y11 receptor protects human cardiomyocytes against hypoxia/reoxygenation injury and involves PKCε signaling pathway. Sci Rep 9:11613.

» PMID: 31406184 Open Access

Benoist L, Chadet S, Genet T, Lefort C, Heraud A, Danila MD, Muntean DM, Baron C, Angoulvant D, Babuty D, Bourguignon T, Ivanes F (2019) Sci Rep

Abstract: Sterile inflammation is a key determinant of myocardial reperfusion injuries. It participates in infarct size determination in acute myocardial infarction and graft rejection following heart transplantation. We previously showed that P2Y11 exerted an immunosuppressive role in human dendritic cells, modulated cardiofibroblasts' response to ischemia/reperfusion in vitro and delayed graft rejection in an allogeneic heterotopic heart transplantation model. We sought to investigate a possible role of P2Y11 in the cellular response of cardiomyocytes to ischemia/reperfusion. We subjected human AC16 cardiomyocytes to 5 h hypoxia/1 h reoxygenation (H/R). P2Y11R (P2Y11 receptor) selective agonist NF546 and/or antagonist NF340 were added at the onset of reoxygenation. Cellular damages were assessed by LDH release, MTT assay and intracellular ATP level; intracellular signaling pathways were explored. The role of P2Y11R in mitochondria-derived ROS production and mitochondrial respiration was investigated. In vitro H/R injuries were significantly reduced by P2Y11R stimulation at reoxygenation. This protection was suppressed with P2Y11R antagonism. P2Y11R stimulation following H2O2-induced oxidative stress reduced mitochondria-derived ROS production and damages through PKCε signaling pathway activation. Our results suggest a novel protective role of P2Y11 in cardiomyocytes against reperfusion injuries. Pharmacological post-conditioning targeting P2Y11R could therefore contribute to improve myocardial ischemia/reperfusion outcomes in acute myocardial infarction and cardiac transplantation.

Bioblast editor: Plangger M O2k-Network Lab: RO Timisoara Muntean DM

Labels: MiParea: Respiration 

Stress:Ischemia-reperfusion, Oxidative stress;RONS, Hypoxia  Organism: Human  Tissue;cell: Heart  Preparation: Intact cells 

Coupling state: LEAK, ROUTINE, ET  Pathway: ROX  HRR: Oxygraph-2k 

Labels, 2019-08