Ayari 2020 Commun Biol
Ayari Asma, Rosa-Calatrava Manuel, Lancel Steve, Barthelemy Johanna, Pizzorno Andres, Mayeuf-Louchart Alicia, Baron Morgane, Hot David, Deruyter Lucie, Soulard Daphnee, Julien Thomas, Faveeuw Christelle, Molendi-Coste Olivier, Dombrowicz David, Sedano Laura, Sencio Valentin, Le Goffic Ronan, Trottein Francois, Wolowczuk Isabelle (2020) Influenza infection rewires energy metabolism and induces browning features in adipose cells and tissues. Commun Biol 3:237. |
Ayari Asma, Rosa-Calatrava Manuel, Lancel Steve, Barthelemy Johanna, Pizzorno Andres, Mayeuf-Louchart Alicia, Baron Morgane, Hot David, Deruyter Lucie, Soulard Daphnee, Julien Thomas, Faveeuw Christelle, Molendi-Coste Olivier, Dombrowicz David, Sedano Laura, Sencio Valentin, Le Goffic Ronan, Trottein Francois, Wolowczuk Isabelle (2020) Commun Biol
Abstract: Like all obligate intracellular pathogens, influenza A virus (IAV) reprograms host cell's glucose and lipid metabolism to promote its own replication. However, the impact of influenza infection on white adipose tissue (WAT), a key tissue in the control of systemic energy homeostasis, has not been yet characterized. Here, we show that influenza infection induces alterations in whole-body glucose metabolism that persist long after the virus has been cleared. We report depot-specific changes in the WAT of IAV-infected mice, notably characterized by the appearance of thermogenic brown-like adipocytes within the subcutaneous fat depot. Importantly, viral RNA- and viral antigen-harboring cells are detected in the WAT of infected mice. Using in vitro approaches, we find that IAV infection enhances the expression of brown-adipogenesis-related genes in preadipocytes. Overall, our findings shed light on the role that the white adipose tissue, which lies at the crossroads of nutrition, metabolism and immunity, may play in influenza infection.
β’ Bioblast editor: Plangger M β’ O2k-Network Lab: FR Lille Duez H, FR Lille Lancel Steve
Labels: MiParea: Respiration
Pathology: Infectious
Organism: Mouse Tissue;cell: Fat Preparation: Intact cells
Coupling state: LEAK, ROUTINE, ET
Pathway: ROX
HRR: Oxygraph-2k
2020-05