Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Monaco 2018b Diabetologia

From Bioblast
Revision as of 09:46, 1 June 2018 by Kandolf Georg (talk | contribs) (Created page with "{{Publication |title=Monaco CMF, Hughes MC, Ramos SV, Varah NE, Lamberz C, Rahman FA, McGlory C, Tarnopolsky MA, Krause MP, Laham R, Hawke TJ, Perry CGR (2018) Altered mitocho...")
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Publications in the MiPMap
Monaco CMF, Hughes MC, Ramos SV, Varah NE, Lamberz C, Rahman FA, McGlory C, Tarnopolsky MA, Krause MP, Laham R, Hawke TJ, Perry CGR (2018) Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes. Diabetologia 61:1411-23.

Β» PMID: 29666899 Open Access

Monaco CMF, Hughes MC, Ramos SV, Varah NE, Lamberz C, Rahman FA, McGlory C, Tarnopolsky MA, Krause MP, Laham R, Hawke TJ, Perry CGR (2018) Diabetologia

Abstract: A comprehensive assessment of skeletal muscle ultrastructure and mitochondrial bioenergetics has not been undertaken in individuals with type 1 diabetes. This study aimed to systematically assess skeletal muscle mitochondrial phenotype in young adults with type 1 diabetes.

Physically active, young adults (men and women) with type 1 diabetes (HbA1c 63.0 ± 16.0 mmol/mol [7.9% ± 1.5%]) and without type 1 diabetes (control), matched for sex, age, BMI and level of physical activity, were recruited (n = 12/group) to undergo vastus lateralis muscle microbiopsies. Mitochondrial respiration (high-resolution respirometry), site-specific mitochondrial H2O2 emission and Ca2+ retention capacity (CRC) (spectrofluorometry) were assessed using permeabilised myofibre bundles. Electron microscopy and tomography were used to quantify mitochondrial content and investigate muscle ultrastructure. Skeletal muscle microvasculature was assessed by immunofluorescence.

Mitochondrial oxidative capacity was significantly lower in participants with type 1 diabetes vs the control group, specifically at Complex II of the electron transport chain, without differences in mitochondrial content between groups. Muscles of those with type 1 diabetes also exhibited increased mitochondrial H2O2 emission at Complex III and decreased CRC relative to control individuals. Electron tomography revealed an increase in the size and number of autophagic remnants in the muscles of participants with type 1 diabetes. Despite this, levels of the autophagic regulatory protein, phosphorylated AMP-activated protein kinase (p-AMPKΞ±Thr172), and its downstream targets, phosphorylated Unc-51 like autophagy activating kinase 1 (p-ULK1Ser555) and p62, was similar between groups. In addition, no differences in muscle capillary density or platelet aggregation were observed between the groups.

Alterations in mitochondrial ultrastructure and bioenergetics are evident within the skeletal muscle of active young adults with type 1 diabetes. It is yet to be elucidated whether more rigorous exercise may help to prevent skeletal muscle metabolic deficiencies in both active and inactive individuals with type 1 diabetes. β€’ Keywords: Calcium tolerance, Capillary density, Mitochondria, Myopathy, Reactive oxygen species, Skeletal muscle, Type 1 diabetes β€’ Bioblast editor: Kandolf G β€’ O2k-Network Lab: CA Toronto Perry CG, CA Hamilton Tarnopolsky MA


Labels: MiParea: Respiration  Pathology: Diabetes 

Organism: Human  Tissue;cell: Skeletal muscle  Preparation: Permeabilized tissue 


Coupling state: OXPHOS  Pathway: N, S, Gp, NS, ROX  HRR: Oxygraph-2k 

Labels, 2018-06