Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Diaz-Ruiz 2008 J Biol Chem

From Bioblast
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Publications in the MiPMap
Díaz-Ruiz R, Avéret N, Araiza D, Pinson B, Uribe-Carvajal S, Devin A, Rigoulet M (2008) Mitochondrial oxidative phosphorylation is regulated by fructose 1,6-bisphosphate. A possible role in Crabtree effect induction? J Biol Chem 283:26948-55.

» PMID: 18682403 Open Access

Diaz-Ruiz R, Averet N, Araiza D, Pinson B, Uribe-Carvajal S, Devin A, Rigoulet M (2008) J Biol Chem

Abstract: In numerous cell types, tumoral cells, proliferating cells, bacteria, and yeast, respiration is inhibited when high concentrations of glucose are added to the culture medium. This phenomenon has been named the “Crabtree effect.” We used yeast to investigate (i) the short term event(s) associated with the Crabtree effect and (ii) a putative role of hexose phosphates in the inhibition of respiration. Indeed, yeast divide into “Crabtree-positive,” where the Crabtree effect occurs, and “Crabtree-negative,” where it does not. In mitochondria isolated from these two categories of yeast, we found that low, physiological concentrations of glucose 6-phosphate and fructose 6-phosphate slightly (20%) stimulated the respiratory flux and that this effect was strongly antagonized by fructose 1,6-bisphosphate (F16bP). On the other hand, F16bP by itself was able to inhibit mitochondrial respiration only in mitochondria isolated from a Crabtree-positive strain. Using permeabilized spheroplasts from Crabtree-positive yeast, we have shown that the sole effect observed at physiological concentrations of hexose phosphates is an inhibition of oxidative phosphorylation by F16bP. This F16bP-mediated inhibition was also observed in isolated rat liver mitochondria, extending this process to mammalian cells. From these results and taking into account that F16bP is able to accumulate in the cell cytoplasm, we propose that F16bP regulates oxidative phosphorylation and thus participates in the establishment of the Crabtree effect.


O2k-Network Lab: FR Bordeaux Devin A, MX Mexico City Uribe-Carvajal S


Labels: MiParea: Respiration 


Organism: Fungi 

Preparation: Isolated mitochondria 

Regulation: Inhibitor, Substrate  Coupling state: OXPHOS 

HRR: Oxygraph-2k 

Crabtree effect